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ABSTRACT: The planning of water supply reservoirs has traditionally been based on the Rippl 
or sequent peak analysis which applies to the design of a single reservoir. This paper 
incorporates the sequent peak method as the central feature in establishing a procedure for 
determining the sizes of several potential reservoirs located in a system of one or more rivers. 
Separate algorithms are developed for sites on parallel streams and for sites on the same stream. 
In both cases the approach is to find the combination of reservoirs which can satisfy a given 
constant monthly demand at a minimum total construction cost. It is shown that both 
problems can be cast in the form of a dynamic programming problem. A more complex system 
is then a combination of reservoirs in parallel and in series. An extension is given if the monthly 
demand is not constant but each reservoir satisfies a constant fraction of the monthly demand. 
(KEY TERMS: dynamic programming; multiple reservoirs; optimal capacity; river system; 
sequent peak method; water supply.) 

INTRODUCTION 

This paper is concerned with determining the sizes of  multiple water supply reservoirs 
which are potential sources for a single user. The problem is one which may arise in the 
planning and design of  a large river system where the available supply can be augmented 
from existing and potentially new reservoirs. 

The foundation of the analysis is the assumption that the problem can be handled as 
an optimization procedure. The purpose is to  find a minimum cost solution that satisfies 
a given demand for water. The resulting solution is expressed in terms of which reservoirs 
t o  build or extend among a set of  alternative sites and t o  what size they should be built. 
Sufficient engineering planning must have preceded this analysis so that the cost of each 
reservoir is known as  a function of its volumetric capacity. I t  is also a necessary 
prerequisite that the river system be  viewed in terms of its distinct components 
represented by the given reservoir sites, existing or potential. 
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Although analysis of the single water supply reservoir is well documented, there are 
very few notions in the literature on how to size and operate multiple water supply 
reservoirs. One of the early works in water resource systems, Maass, ef al., (1962) did 
treat the joint operation of many reservoirs but did not concern itself with capacity 
decisions. More recently, Hall and Dracup (1970) focus on the allocation of total storage 
among reservoir sites without explicitly considering how the hydrologic interdependence 
is given by the topology of the river system. This will tend to ignore that the marginal 
unit of storage has a different effect on the total draft depending on which site it is 
allocated to. Buras ( 1972) discusses various applications of dynamic programming and 
linear programming to the design and operation of multistructure systems. Much of the 
emphasis is on the formulation of the objective function to represent some appropriate 
economic planning goals. Nayak and Arora (1973) developed a nonlinear programming 
formulation for finding the capacities in a system designed for flood control, low-flow 
augmentation, and recreation. The solution was achieved by piecewise linearization of all 
the functions. 

In the term “multiple water supply reservoirs,” the following cases are included: 

1) Many reservoirs on the same stream 

2)  Reservoirs on parallel streams. 

In both cases drafts from all reservoirs are to be utilized to provide a single supply; the 
supply may be constant or may vary with the time of year. Streams may be branched and 
new inflows may occur between successive reservoirs. All these situations may be dealt 
with via dynamic programming, an optimization method which supplants the enumerative 
notions which may have preceded this paper. 

The principal component of the analysis is the procedure to determine the necessary 
capacity of a single reservoir as a function of the draft from that reservoir. This is 
accomplished by means of the so-called Rippl method or the slightly more general 
sequent peak method. It should therefore be pointed out that the reliability of the overall 
procedure is determined by the reliability of the Rippl or sequent peak method and this 
may indeed be a limiting factor. However, these methods represent the state-of-the-art 
and are analytically powerful and computationally easy to implement. Although the 
present work rests on the computer-oriented technique of dynamic programming, it is 
feasible to do the computations by hand even for fairly large systems. 

Since Rippl’s analysis of the 1880’s, engineers have known how to determine the 
capacity of a single water supply reservoir. Under the assumption that historical records 
provide a strong clue to the worst hydrologic circumstances that might again occur, Rippl 
showed how to calculate the reservoir storage required to meet a given feasible constant 
draft for water supply. Babbit and Doland (1955) showed how to extend Rippl’s graphical 
technique to the situation in which draft requirements vary through the year. But for a 
sentence or two, the calculation they suggest is the method now known as the sequent 
peak method (Fair, Geyer and Okun, 1966). Of course, they made use of only historical 
records; the use of the sequent peak procedure has been recommended for use with 
synthetic hydrologic records as well, and wisely so. The advantage of the sequent peak 
procedure as stated is that it is readily adaptable to programming for the computer. 
However, the procedure does have some well-known shortcomings (Hall and Dracup, 
1970; Buras, 1972) due to its deterministic rather than truly stochastic nature. 

The sequent peak method is based on a mass diagram, i.e., a graph of cumulative 
volume versus time. The graphical form displays the time history of the net amount of 
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water that would accumulate at a given location of a stream if an infinitely large reservoir 
were available at that site. In each time period this net volume is the difference between 
the inflow and the draft. Graphically, the size of the reservoir required to meet this 
continuous draft is given by the maximum difference between a peak and a later trough. 
However, the draft cannot be greater than the average inflow into the reservoir. Likewise, 
for every site there is an upper limit to the size of reservoir that can be built. 
Consequently, to any capacity of reservoir within a feasible range there corresponds a 
maximal withdrawal rate that can be sustained under the hydrologic record. 

RESERVOIRS ON PARALLEL STREAMS 

Consider n existing and potential reservoirs on n different streams such that only one 
site is available on each stream. A long hydrologic record is available for each stream 
including several successive years of low flows. The cost of expanding or building a 
reservoir at each of the sites is known as a function of the reservoir capacity. The problem 
is to determine what sites to develop and what size reservoir to build at each site such 
that a given demand is met. Let 

li,t 
D 

di 
Ci 
Ki 
Yi 

fi(Ci) = cost as a function of capacity for reservoir i. 

= given inflow in month t at reservoir i. 
= monthly demand to be supplied by total draft from all reservoirs; constant 

= constant monthly draft from reservoir i; a decision variable. 
= capacity of reservoir i. 
= current capacity of reservoir i, hence a lower bound on Ci. 

=draft corresponding to Ki, hence a lower bound on di, i.e., the current 

through the year. 

maximum yield from reservoir i. 

Note that Ki = 0 if no reservoir currently exists at  site i. For each reservoir, i, pick 
values of di, y i i  d i<D,  and for each di use the sequent peak method to establish the 
corresponding reservoir capacity, Ci. (If yi is not known a priori, then allow values of di 
in the interval 0 5  d i s  D. The value of yi will then emerge from the computations.) The 
resulting relationship between Ci and di must be kept or stored as a graph or a table. The 
hydrology of a site will put an upper limit on the draft that can be sustained on a 
continuous basis. This limit may be greater than or less than D. In either case, Ci will 
approach infinity as di approaches this limiting value. Substitute for Ci in the cost 
function, fi(Ci), and the new cost function, fi(di), now has di as its independent variable. 

We wish to minimize the total cost of all reservoirs such that the given demand is met; 
hence 

minimize 2 fi(di) 
i =  1 

n 
i =  1 

subject to C di = D 
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This formulation describes an optimization problem where the objective function is a sum 
of nonlinear terms, and the constraint set is a single linear equation with lower bounded 
variables. Without any additional information about the behavior of the objective 
function, this problem can be solved as a dynamic programming problem in one of its 
simplest forms. The procedure requires one stage for each reservoir site, i. At each stage 
the decision variable is di and the return function is fi(di). The state variable will be 
defined from the constraint as the unfulfilled demand at stage i. Further details of this 
procedure are readily available in basic text books, e.g., Nemhauser (1966). The problem 
must be solved as a discrete one since the functions of fi(di) are likely to be available only 
in tabular form. Given the di's of the optimal solution, the Ci's are read from the n graphs 
or tables of Ci versus di. Note that no restrictions or qualifications have been inserted as 
to the behavior of the cost functions, fi(Ci), or the capacity relationships, Ci(di). Discrete 
dynamic programming is a highly organized form of enumeration so it requires no 
particular analytical properties of the functional relationships. 

The more realistic problem allows a monthly or seasonal variation in the total demand 
instead of being a constant, D. The procedure outlined above is then applicable only if an 
additional assumption is made about the operating policy of the reservoir system. This 
amended policy is that each reservoir must provide a constant fraction of the monthly 
demand regardless of its magnitude. In that way, the variable draft from any reservoir is a 
scaled down image of the fluctuating total demand. Hence, 

xi = fraction of the demand provided by reservoir i; a decision variable. 

pi = minimum fraction which can be supplied by an existing reservoir at site i, i.e., yi 

Dt = demand in month t 

as a fraction of the highest monthly demand. 

Note that yi and pi may both be non-zero if a continuous supply can be provided at 
site i without the building of a reservoir. Other variables are as defined above. 

In a process similar to the one above, the cost of each reservoir will be determined as a 
function of its relative contribution to the demand, xi. Reservoir i will supply xiDt in 
month t ;  an unknown variable quantity. Each value of xi, p i s x i  5 1, therefore futes a 
schedule of drafts from the reservoir, and the required reservoir capacities can be found 
from the sequent peak method. This computation will also yield the value of pi if it is not 
already known. 

Having found the cost functions, fi(xi), for all i, the minimum total cost is given by 

minimize 

subject to 
n c x i = 1  

i =  1 

xi> pi, for all i 

(4) 

This formulation is nearly identical to the first one and can likewise be handled as a 
dynamic programming problem. 
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RESERVOIRS IN SERIES 

The case of reservoirs in series on the same streams can also be solved by dynamic 
programming. A simple procedure can be employed if there is no added inflow between 
the reservoirs. The hydrologic profile of the stream flow is then the same for all points on 
the stream. Based on this flow and the required demand, the sequent peak procedure 
yields a total necessary capacity of C. Let 

Ci 

Ki 
fi(Ci) = given cost function for reservoir i. 

= unknown capacity of reservoir i. 

= capacity of existing reservoir at site i. 

The problem then becomes 

n 

i =  1 
subject to 2 Ci = C  

Ci_> Ki, for all i (9) 

A more complex dynamic programming problem emerges if there are additional 
inflows between the sites. Starting at the upper end of the stream, each site (i) represents 
a stage in the problem. The decision variables at each stage is the total combined draft 
from site i plus the i-1 upstream sites. As in the previous case, sufficient hydrologic 
records are assumed to be known for each of the incremental inflows as well as the cost 
for any reservoir capacity at every site. 

Figure 1.  The ith Reservoir in a Series, Showing Inflow and Outflow. 
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Let 

D 

di 

4 , t  
Ji,t(di.l) = total inflow in reservoir i in period t.  

Si,t(di) 

ai 
fi(.) 

fr(di) 

= total demand, monthly volume. 

= combined supply from reservoirs 1, 2 ,  . . . i in period t.  

= inflow added between reservoirs i-1 and i in period t .  

= spill from reservoir i in period t .  

= yield from existing reservoirs a t  sites 1, 2, . . . i. 
= cost of  reservoir i. 

= optimal combined cost of reservoirs 1, 2, . . . i ,  providing a combined 
Supply of di. 

Note that in accordance with these definitions it follows that 

d 0  = 0. 
dn = D. 

a0 = 0. 

Jl,t(do) = I l , t .  

d i -  di-1 

f;(do) = 0. 

= monthly draft from reservoir i. 

Ji,t(di.l) = li,t + Si.1 ,t(di-l), for i f 1. 

The spill from reservoir i depends on the capacities of  all the upstream reservoirs 
including reservoir i. However, of all the combinations of reservoir sizes which would 
provide exactly di in total draft, there is one optimal combination (a least cost solution) 
which will be recorded. The spill which would occur at this particular partial solution is 
the one noted by Si,t(di). Therefore. total inflow into the next reservoir, J i+ l  $di), is also 
uniquely determined by di. 

The computational procedure is iterative, starting at the upstream end. Briefly, while 
site i is under consideration, the best combination of  all upstream reservoirs is known in 
ternis of the total amount of water supplied by  those reservoirs. The next iteration (stage) 
will then generate the optimal size of reservoir i for every possible value of the combined 
draft when reservoir i is included. Although it will not  be known how much of the 
demand should be satisfied by the i first reservoirs, the optimal individual releases will be 
known for any value of this total draft. In this fashion, each iteration corresponds to one 
site. The last iteration corresponds to the most downstream site where the combined 
draft from all reservoirs must equal the demand. 

The reservoir sites are indexed from 1 t o  n beginning with site furthest upstream. The 
numbering therefore coincides with the sequence of the numerical procedure. This differs 
from the conventional dynamic programming algorithm which starts the computation at 
stage n and proceeds t o  stage 1. The choice of indexing does not  affect the outcome or 
the validity of  the algorithm. Furthermore, the recursive formulas often associated with a 
typical dynamic programming problem have been omitted here in favor of  a more 
intuitive explanation of the procedure. Any necessary formulas are incorporated in the 
algorithm which is displayed in the Appendix. 



542 Wathne, ReVelle and Liebman 

There will in general be reservoirs in existence at several of the sites. I t  is appropriate 
to assume that the existing reservoirs are unable to satisfy the total demand, otherwise 
there would be no need to improve the system. This assumption is not strictly necessary. 
It will also be assumed that these reservoirs will be operated at their maximal yield. The 
effect of these reservoirs on the computations is t o  provide a lower bound on the di, i.e., 
there is a minimal draft that can be provided in the absence of any improvement program. 

At site 1, the reservoir site furthest upstream, the computations are simpler than at the 
subsequent iterations. The object is to determine fl(dl), i.e., the optimal cost of that 
reservoir in terms of the continuous draft of d l .  This is the same procedure as that 
established for the parallel reservoirs. The quantity d l  is vaned between a1 (or 0) and D, 
and the necessary capacities are generated by the sequent peak procedure. Combined with 
fl(C1), the result is ff(d1). For every d l  the associatedspill,Sl,t(dl), can be computed. 

At any subsequent site, i, the inflow is known since the spill from the previous site, i-1, 
is known. Consider any value of di, the total draft from site i plus all upstream reservoirs. 
For this value of di computations will be made for all possible values of draft from 
reservoir i, hence all possible values of di-1. Pick any di.1 between ai.1 and di. The inflow 
can now be determined, so the cost of the reservoir which will provide didi.1 can be 
found from the sequent peak procedure as before. The total combined cost is determined 
by adding fi*l(di.l) to the cost of reservoir i. Similarly, a total cost figure can be 
computed for every other feasible value of di.1 while keeping di constant. By simple 
comparison, the smallest of these total costs is found and is recorded as f:(di). Likewise, 
the associated spill, Si,t(di), is computed and recorded. 

The same procedure is then carried out for every other level of di. If no reservoir exists 
at site i then ai.1 is a lower bound on di. In the event that a positive capacity does exist, 
then a sufficiently small value of di will eventually be picked such that it equals the yield 
from the current reservoirs down to and including reservoir i. This will be the value of ai 
which will be at least as great as ai.1. The total draft rates at all subsequent stages must be 
at least equal ai. 

The Computations are carried out for all sites including the one furthest downstream. 
At this point it is known that dn = D, i.e., the total draft must equal the demand. The 
ultimate value of fi(dJ is the optimal total cost. The capacities of the individual 
reservoirs must be computed by backtracking from the solution of the final iteration, first 
by finding the draft rates from each reservoir. A simple table has been generated during 
the computations which shows the optimal value of di.1 for every possible value of di. 
The individual draft rates, di - di- 1, can therefore be found starting at the last site. The 
last phase is to determine the actual reservoir capacities. The optimal draft rates are now 
known, so the total inflow into each reservoir can be computed starting at the upstream 
site. Finally, each capacity can be found from a single application of the sequent peak 
analysis at each site. The details of the procedure are shown in algorithmic form in the 
Appendix. 

The cumulative withdrawal from the reservoirs, 4, has been conceptualized as a 
distinct flow separated from the stream. Alternatively, di can be considered to be released 
directly to the next downstream reservoir and the total supply, D, to be withdrawn at the 
last reservoir. A closer examination will reveal that these two conceptualizations result in 
the same analysis yielding identical solutions. A brief motivation for this reasoning is the 
fact that the sequent peak does not change if the inflow and draft rate are increased by 
identical amounts. In practical terms, however, there would be differences in the 
construction and operation of the two systems. Feeder lines from the reservoirs plus a 
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separate transmission line would be required if there is a withdrawal from the stream at 
every reservoir. However, if the withdrawal takes place only at the downstream end of the 
system, then the outlet works and the stream channel must be designed to handle the 
higher flows. 

The river may be long enough that there is a considerable time lag of the flow between 
the reservoirs and the confluence of the tributaries. For instance, the outflow from 
reservoir i-1 reaches reservoir i after a certain time period. The total inflow at i also 
includes some intermediate inflow into the system, e.g., a tributary. The two components 
of the inflow cannot be added unless there has been an adjustment for the time lag such 
that the two time series represent observations made at the same reference point. The 
choice of reference point is arbitrary since it will only shift the resulting total inflow in 
time and not alter the profile of the curve. Therefore, it may be advantageous to make 
the last site (n) the common reference point for all inflows prior to the analysis. The 
element of time lag will subsequently not enter into the computations. 

The algorithm for reservoirs in series can also be generalized to include the case of 
nonconstant demand. Like the algorithm for reservoirs in parallel, it will be assumed that 
each reservoir provides a constant fraction of the total demand, D. Following a similar set 
of conversions, both the unknown decision variable and the lower bounds will be 
nondimensional. At the final stage, the decision variable must equal one, requiring that 
the complete demand be met at that point. The details of this procedure will not be 
shown here. 

COMBINED SYSTEM 

The analysis has been limited to the two special cases of water resource systems where 
reservoir sites are considered either in parallel or in series. The procedures differ for the 
two situations but at this point it can be shown that they can be combined to include a 
more general river system of several sites on several parallel rivers. First, each river has to 
be treated as one serial system whose contribution toward the demand is unknown. 
Therefore, it should be solved for a range in values of total draft, i.e., D must be replaced 
by a variable parameter in the algorithm for reservors in series. The algorithm (as given in 
the Appendix) must then be applied for each feasible value of this parameter. From these 
results are generated a cost function with respect to the total draft from that river. 
Similarly, a cost function can be determined for each one of the parallel streams. Finally, 
a dynamic programming formulation like ( l ) ,  (2),(3) can be expressed directly. 

CONCLUSION 

The computational aspect must be addressed since it has a strong dependence on the 
nature of the problem. Although the modern mathematical programming ability has been 
developing in the wake of the growing computational potential, the present procedure 
can in many instances be carried out efficiently by hand. The extent of the physical 
problem is one determining factor as well as the required refinement of the computations, 
particularly in terms of the incremental values of the variables. Although conceptually the 
problem is one of continuous variables (draft rates, capacities), the procedure presented 
here is based on discrete values. The precision of the solutions increases at the expense of 
the computational effort when the variables are discretized with smaller intervals. In 
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another respect, the algorithms developed here are relatively free of a type of 
computational complexity often encountered in dynamic programming problems. Using 
the terminology of dynamic programming, both the serial and parallel algorithm feature 
only one decision variable per stage and only one state variable. 

It is important to note that this proposed analysis applies t o  design only. It is based on 
an operating rule for the individual reservoirs to provide a safe yield through a period of 
relative drought as defined by the hydrologic record of flows. There is a direct 
dependency of the method set forth here on the operating rule and it is appropriate to be 
aware of the inherent limitations. The flaw is the assumption that each reservoir provides 
either a constant draft or a constant proportion of the total draft. In reality, the 
operation of the system would in any one time period depend on the status of the 
reservoirs as well as the expected inflows. Simplistically, the draft would be provided 
from the fuller reservoirs or from those which expect immediate large inflows. A 
sophisticated operating rule would take into account the risks of the future operations 
based on the present situation and the hydrologic predictions. One of the features that 
can be added is the preferential draft from the lower reservoirs on a stream or the upper 
ones as the situation may present itself. Therefore, one can expect a great deal of latitude 
in the operation of a reservoir system far beyond the simple rule which is the basis for the 
sequent peak method. The literature has reflected the recent surge of interest in this 
particular phase of water resource management. A reservoir system as designed by the 
method suggested here is therefore overdesigned, i.e., there is a built-in safety factor. 
Depending on the desired reliability of the analysis, the output from the design phase can 
be tested in a simulation model where other proposed operating rules can be tried out. 
The compatibility between design and the operating rule is otherwise difficult to measure. 
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APPENDIX 

Let 
D 

di 

li,t 

Ji,t(di-l) 

= total demand, monthly volume. 

= mmbined supply from reservoirs 1, 2, . . . i in period t. 

= inflow added between reservoirs i-1 and i in period t. 
= total inflow in reservoir i in period t. 
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Si,t(di) 

ai 

= spill from reservoir i in period t. 

= yield from existing reservoirs at sites 1, 2, . . . i. 
f i t )  

fr(dj) 
Furthermore, 

= cost of reservoir i. 

= optimal combined cost of reservoirs 1 ,2 ,  . . . i, providing a combined supply of di. 

= 0. 

dn = D. 

$ - di-l = monthly draft from reservoir i. 
= 0. a0 

%(do) = O .  

Ji,Jdi-l) =' i , t+S i - l , t (d i - l ) . for i f l .  

d0 

Jl,t(do) = Il,t. 

Algorithm for fmding the capacities of reservoirs in series with intermediate inflows, constant demand: 

Step 0 
Let i=O.  
Go to step 1. 

Let i =  i +  1. 

Go to step 2. 

Pick a value of $; 3 5 di 5 D; starting with di = D. 
Lfi = n, then di = D. 
If di = ai, go to step 1 ; otherwise, go to step 3. 

Pick a value of di-1; q-1 5 d i - l  <di; starting with di-1 = ai-1. 
If i = 1, then di.1 = 0. 
If di.l = di. go to step 5; otherwise, go to step 4. 

Compute JjJdi-1) and di-di-1. 
Find Ci from the sequent peak procedure. 
Find fi(di-diWl) from fi(Cj). 
If fi(') = 0, then let ai = di. 
If i = n, go to step 5; otherwise, go to step 3. 

Let ff(di) = minimum [fi(di-di-1) + firl(di-1)] ; aiel Sd i -1  S d i .  
Record the corresponding value of di-1 in a table. 
Compute Si(di). 
If i = n, go to step 6; otherwise, if di = D, go to step 1 ;otherwise, go to  step 2. 

Given the fiial solution, d n =  D, backtrack to find di's: given the optimal di, fmd the 

Recalculate di-di.l and Ji,t(di-l); find Ci from the sequent peak procedure; i = 1, 2, . . .,n. 

Step 1 

L e t q = q 1 .  

Step 2 

step 3 

Step 4 

Step 5 

Step 6 

corresponding di-l from the stored table; i = n, n 1, . . . , 2. 


