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SEASONAL ARIMA INFLOW MODELS
FOR RESERVOIR SIZING'

Dimitris M. Papamichail and Pantazis E. Georgiou2

ABSTRACT: The reliable sizing of reservoirs is a very important
task of hydraulic engineering. Although many reservoirs through-
out the world have been designed using Rippi's mass curves with
historical inflow volumes at the dam site, this technique is now con-
sidered outdated. In this paper, synthetic series of monthly inflows
are used as an alternative to historical inflow records. These syn-
thetic series are generated from stochastic SARIMA (Seasonal
Autoregressive Integrated Moving Average) models. The analyzed
data refer to the planned Almopeos Reservoir on the Almopeos
River in Northern Greece with 19-year monthly inflow series. The
analysis of this study demonstrates the ability of SARIMA models,
in conjunction with the adequate transformation, to forecast
monthly inflows of one or more months ahead and generate syn-
thetic series of monthly inflows that preserve the key statistics of
the historical monthly inflows and their persistence Hurst coeffi-
cient K. The forecasted monthly inflows would be of help in evalu-
ating the optimal real time reservoir operation policies and the
generated synthetic series of monthly inflows can be used to pro-
vide a probabilistic framework for reservoir design and to cope with
the situation where the design horizon of interest exceeds the
length of the historical inflow record.
(KEY WORDS: seasonal ARIMA model; generating; forecasting;
persistence; reservoir sizing.)

INTRODUCTION

Reservoir capacity-yield procedures can be classi-
fied theoretically into three main groups (McMahon
and Mein, 1986) although the distinction between
groups is not always clear-cut. The first group (critical
period techniques) includes methods in which a
sequence of flows for which demand exceeds inflows is
used to determine the storage size. The second group
of procedures (Probability Matrix Methods) consists of
those methods which are based on Moran's Dam The-
ory (Moran, 1954). Finally, the third group consists of

those procedures which are based on inflow data gen-
erated by stochastic models. The most widely used
method for reservoir sizing is the Rippi's method,
which belongs to the first group and is based on the
range analysis of the historical inflow volumes at the
dam site (Rippl, 1883). The method assumes implicit-
ly that the historical reservoir inflows will be repeat-
ed in the future during the operation life of a
reservoir, an assumption which is obviously incorrect.
The estimation of a unique storage volume that does
not allow any risk assessment and its dependency on
the length of historical inflow time series are other
important drawbacks of the conventional determinis-
tic method. To solve the problems created by the
deterministic conventional approach for reservoir siz-
ing, which is based on the mass curve procedure
(Rippi Diagram) with the historical monthly inflow
time series at the dam site, a stochastic simulation
technique was applied. This technique uses stochasti-
cally generated inflows and allows the estimation of a
probability distribution function of the storage vol-
umes, relating the latter to their risks.

In this paper, the synthetic monthly inflows into a
planned Reservoir (Almopeos river basin) in Northern
Greece were generated by using a multiplicative
SARIMA (Seasonal Autoregressive Integrated Moving
Average) model based on the discrete time series of
historical monthly inflow values of Almopeos river for
the last 19 years. It is increasingly recognized that
the stochastic models, known as SARIMA models are
of considerable practical use in dealing with generat-
ing of natural flows (Box and Jenkins, 1976; Salas et
al., 1985; Lungu and Sefe, 1991; Bender and
Simonovic, 1994; Hipel and McLeod, 1994). SARIMA
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models became very popular because of their simple
mathematical structure, ideal representation of the
statistical and the correlation structure of the corre-
sponding observed inflows, convenient representation
of data in terms of a relatively small number of
parameters and their applicability to stationary as
well as nonstationary processes. These models are
also well suited to the analysis of time series that are
by nature persistent, which is true in the case of flow
or inflow time series (Hipel and Mcleod, 1994). Persis-
tence is a long-term statistical property of an inflow
series according to which high inflow periods tend to
follow other high inflow periods and this cluster phe-
nomenon is likewise behaved with the low inflow peri-
ods. When sizing reservoirs, by using stochastically
generated inflows, the rescaled adjusted range (RAR),
or equivalently the Hurst coefficient K (Hurst, 1951,
1957; Salas and Boes, 1974; Anis and Lloyd, 1976;
McLeod and Hipel, 1978; Hipel and McLeod, 1978;
Salas et al., 1979; Kiemes et al., 1981; Mimikou and
Nalbandis, 1987; Vogel and Stedinger, 1988; Salas,
1993), expressing their persistence, must be pre-
served by the inflow generating model. The analysis
of this study demonstrated the ability of SARIMA
models, in conjunction with the adequate transforma-
tion, to forecast monthly inflows of one or more
months ahead and generate synthetic series of month-
ly inflows which preserve the key statistics of the his-
torical monthly inflows and the Hurst coefficient K.
The forecasted monthly inflows would be of help in
evaluating the optimal real time reservoir operation
policies and the stochastically generated monthly
inflows can be used to ensure the reliable sizing of the
reservoir.

SARIMA Models

A discrete time series Z1, Z2, Z3, ..., ZN1, ZN of
measurements at equal time intervals can be simulat-
ed by a stochastic SARIMA model (Box and Jenkins,
1976; Salas et al., 1985; Brockwell and Davis, 1987;
Montgomery et al., 1990; Lungu and Sefe, 1991; Ben-
der and Simonovic, 1994; Hipel and McLeod, 1994) of
the form

B)t(Bs)(1B)d(1Bs)DZt = 0(B)O(BS)et

where t is the discrete time; S is the length of seasons;
B is the backward shift operator defined by BZ = Z1
and BSZt = Zts; et = [NID(0,c2e)] is the normally inde-
pendently distributed white noise residual with mean

zero and variance c2e; (p(B) = 1 - (p1B - (p2B2
- ... - pBP

is the nonseasonal autoregressive (AR) operator of
order p and q, i = 1,2, ..., p are the nonseasonal AR
parameters; (1 - B)d is the nonseasonal differencing
operator of order d to produce nonseasonal stationari-
ty of the dth differenced data, usually d = 0, 1, or 2;
I(BS) = 1 - 1Bs - 2B28 - - BP; is the seasonal
autoregressive (AR) operator of order P and i =
1,2, ... , P are the seasonal AR parameters; (1BS)D is
the seasonal differencing operator of order D to pro-
duce seasonal stationarity of the Dth differenced data,
usually D = 0, 1, or 2; 8(B) = 1 - 81B .• 82B2 - ... - 8qB
is the nonseasonal moving average (MA) operator of
order q and O, i =1, 2, ..., q are the nonseasonal MA
parameters; and ®(BS) = 1 - e1B - ®2B25 -

- OQBQS is the seasonal moving average (MA) opera-
tor of order Q and ®, i = 1, 2, ..., Q are the seasonal
MA parameters.

The notation (p,d,q)(P,D,Q) is used to represent
the SARIMA model. In this paper, the time series of
monthly inflows is simulated by a SARIMA model.
The application of the SARIMA models requires sta-
tionarity of time series data obtained by different
transformations. Models in hydrology frequently use
the natural logarithm of the measurements rather
than working with the historical untransformed data.
The logarithmic transformation is ch.osen to stabilize
the variance of the series and to transform the usual-
ly skewed inflow distribution into a normal distribu-
tion.

Although in practice the most popular transforma-
tion is the logarithmic, other transformations such as
the family of one parameter transformations as intro-
duced by Box and Cox (1964), is considered in this
paper and computed by

Z(X) — 1t

Z=glnZ ,x=o

where Z is the historical untransformed time series;
is the historical transformed time series; A is the

parameter transformation; t is the discrete time; and
g denotes the sample geometric mean. The transfor-
mation in Equation (2) is valid for Z1.> 0. Since there
are no months of zero inflow we use the family of one
parameter transformations.

(1) Estimates for the parameters in

p(B)(BS)(1B)d(1Bs)DZ = 0(B)O(BS)et

have to be derived. For a trial series of A values and
corresponding Ztirne series, the estimates for the
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Persistence

In modeling hydrologic time series for simulation
studies of reservoir systems, storage-related statistics
may be particularly important. Consider the hydro-
logic time series Z, t = 1,..., N and a subsample Z1,

(4) Zn with n � N the partial sums and the adjusted par-
tial sums are defined, respectively, as (Salas et al.,
1979; Salas, 1993)

Si = + Z1 (7)

The maximized log likelihood is, except for a con- s = s_1 + (z —
stant, given by

Lm(X)0 _[.1J log c2(et,A)

where N is the record length.
From the plot of the maximized likelihood function

L(A) for a trial series of A values the maximizing
value A can be read off. If the maximizing value A is
equal to zero the application of the SARIIVIA models
requires stationarity of time series obtained by loga-
rithmic transformation (Equation 2).

The construction of SARIMA models involves vari-
ous stages (Box and Jenkins, 1976; Hipel and
McLeod, 1994), which are the identification, the esti-
mation, and the diagnostic checking. The purpose of
the identification stage is to determine the differenc-
ing required to produce stationarity and to estimate
the order of both the seasonal and nonseasonal AR
and MA operators for the stationary series. The iden-
tification is examined by the cumulative periodogram,
the autocorrelation function and the partial autocor-
relation function. The estimation stage involves the
estimation of the time series model parameters. This
estimation is obtained by the residuals squares mini-
mization using the Marquardt algorithm (Kuester
and Mize, 1973). Finally, the diagnostic checking
involves examination of the residuals fitted model and
this can or cannot prove the model inadequancy, and
it can also inform about the model improvement. This
determination can be achieved by using the identifica-
tion stage tests and, furthermore, the Akaike's infor-
mation criterion (AIC) (Akaike, 1974), the Kashyap's ________
posterior probability (PP) criterion (Kashyap, 1977)
and the Residual variance (RV) criterion (Kareliotis
and Chow, 1992). Cline (1981) derived the AIC and PP
criteria for logarithmic transformed series and they
have been used in this study. The selection rules in
the AIC, PP, and RV criteria are to select the model
with the lowest AIC, PP, and RV values, respectively.
The best model chosen is used for forecasting and
generating synthetic monthly inflows into a reservoir.
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parameters in SARIMA model in Equation (3) can be
derived and the particular white-noise sequence et
and the variance c2(et,A) of each time series are com-
puted respectively, by

et = 01(B)EY1(B5)p(B)1(B5 )(1 —B)d(l— BS )D

N

a2(et,X)= IN (5)

(8)

where S = S = 0 and Zn is the sample mean. The
(6) crude range R, the adjusted range R and the

resealed adjusted range R* are defined by (Salas et
al., 1979; Salas, 1993)

= max(0, 51 2' Sn) - min(0, i, 2' ...,S) (9)

R =max(0,S,S,...,S)—min(O,S,S,...,S) (10)

R*=R/s (11)

in whic is the sample standard deviation. Both
R and have been widely used in the literature as
measures of long term dependence and for comparing
alternative models of hydrologic series (McLeod and
Hipel, 1978; Hipel and McLeod, 1978).

In particular, Hurst (1951, 1957) showed that for a
large number of geophysical time series such as
stream-flow, precipitation, temperature, and tree-ring
series, the mean rescaled adjusted range R is pro-
portional to h with h > 0.5. The discrepancy between
theoretical results stating that h = 0.5 and Hurst's
empirical finding that h > 0.5 has become known as
the Hurst phenomenon. Several estimators of h have
been proposed and used in stochastic hydrology such
as the original Hurst estimator K (Hurst, 1951, 1957)
which is considered in this paper and defined as

1og(R*)K= (12)
log(n/2)

Hurst estimator K was found to range from 0.46 to
0.96 with a mean of 0.73 and a standard deviation of
0.09 (McLeod and Hipel, 1978; Hipel and McLeod,
1978; Salas, 1993).
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Reservoir Sizing by Using Historical and
Stochastically Generated In flows

One of the earliest methods for estimating the size
of storage to meet a given draft is the Rippi's method
which is based on the estimation of the maximum
range of the inflow time series at the dam site (Rippi,
1883). The level of development a is defined as follows

N N
a = Qtt/Zt

i=1 i=1

where tt is a time interval taken in this paper equal
to one year; Q1 is the annual draft or reservoir
release; Z1 is the annual inflow; and N is taken equal
to the number of years of the inflow time series. For
each inflow time series the maximum range R of the
cumulative inflow monthly volumes Xt has been esti-
mated as follows

R=max i(t)—min Mt) (14)

—xS —---(xS+T _xs)]

in which the subscript S denotes time at the begin-
ning of the inflow time series, and T is the time at the

end of the inflow time series. The maximum range R
of cumulative departures of the inflow volumes from
the draft time series for a sequence of inflows cover-
ing N years is defined to be the storage capacity V
required to meet the draft requirements over N years.
Thus, for the n stochastically generated inflow time
series the values of storage volume V1, i = 1,2,...
have been estimated. The cumulative probability dis-
tribution function of these volumes F.(v) has been
then estimated according to the usual statistical pro-

13' cedure. This distribution relates the storage volumes
to their risks c%. Risk c% is defined to be the proba-
bility of not meeting the design storage capacity (the
reservoir will be empty or will not meet the required
water yield), as follows

Fv (v)(%) = 100— s%. (16)

RESULTS AND DISCUSSION

In the present study, the SARIM:A model is con-
structed to simulate the discrete time series of histori-
cal monthly data of inflows into a planned reservoir

(15) located on the Almopeos river (22°09, 40'46N), in
Northern Greece. The drainage area of the river basin
at the dam site is equal to 1021 km2. The available
historical monthly inflows at the danì site cover a 19-
year period (1975 to 1993) and are shown in Figure 1.

Month/Year

Figure 1. Monthly Inflows Into Almopeos Reservoir.
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The logarithmic transformation was chosen to sta-
bilize the variance, as recommended by Ledolter
(1978), for this type of series. From the cumulative
periodogram, the autocorrelation function and the
partial autocorrelation function of the logarithmic
transformed time series of monthly inflows (1975 to
1993) into Almopeos Reservoir (Figure 2), the model
with the structure (2,0,0) (0,1,1)12 was found to be a
candidate model. To allow for possible identification
errors, a set of nine models (Table 1) with the struc-
tures close to that of (2,0,0) (0,1,1)12 were considered.
The parameters of each of the model structure were
estimated using the Marquardt algorithm and the
AIC, PP and RV criteria were applied to select the
best model. The AIC, PP and RV values for all the
models are also listed in Table 1. It can be seen that
the model (2,0,0) (0,1,1)12 has the lowest AIC, PP and
RV values. These indicate that the (2,0,0) (0,1,1)12
model is suitable. The estimates of the parameters of
the (2,0,0) (0,1,1)12 model together with their confi-
dence limits, standard errors, T-values and P-values
are given in Table 2.

TABLE 1. Akaike Criterion (AIC), Posterior Probability Criterion
(PP), and Residual Variance (RV) for the Different Models
of the Logarithmic Transformed Time Series of Monthly

Inflows (1975 to 1993) Into Almopeos Reservoir.

Model
Structure AJC PP RV

(0,1,1) (0,1,2)12 7353.656 7406.80 0.246407

(0,1,1) (0,1,3)12 7357.50 7428.38 0.246249

(0,1,1) (1,1,1)12 7351.50 7395.79 0.246246

(1,1,1) (1,1,1)12 7350.15 7412.16 0.240534

(1,1,2) (1,1,1)12 7349.03 7428.76 0.235195

(1,0,1) (0,1,1)12 7337.37 7381.67 0.23346

(2,0,0) (0,1,1)12 7337.35 7372.78 0.23145

(3,0,0) (0,1,1)12 7338.21 7382.50 0.232299

(1,0,0) (0,1,2)12 7343.42 7378.86 0.239769

(0,1,1) (0,1,1)12 7349.33 7384.77 0.24606

Figure 2. (a) Cumulative Periodogram FC(fk)J, (b) Autocorrelation Function [ACFJ, and
(c) Partial Autocorrelation Function [PACF] of the Logarithmic Transformed

Time Series of Monthly Inflows (1975 to 1993) Into Almopeos Reservoir.
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TABLE 2. Parameter Estimates and Their 95 Percent Confidence Limits, Standard Errors,
T-Values, and P-Values for the (2,0,0) (0,1,1)12 of the Logarithmic Transformed Time

Series of Monthly Inflows (1975 to 1993) Into Almopeos Reservoir.

Parameter Estimate
95 Percent

Confidence Limits
Standard

Error T-Value P-Value

i 0.60211 (0.46883,0.73539) 0.06762 8.90489 0.00000

P2 0.16415 (0.03057,0.29773) 0.06777 2.42234 0.01626

e1 0.76570 (0.67359,0.85781) 0.04673 16.38408 0.00000

The candidate model has to be validated for its
suitability through the diagnostic checking before
making a final selection. The tools used for diagnostic
checking are: (1) overfitting and (2) check for random-
ness of residuals. The check for overfitting is to exam-
ine the confidence limits of the parameters. The
hypothesis is that if the confidence limits include the
value zero, then the corresponding parameter needs
to be discarded, and if they include 1, then replace-
ment of the associated term by a difference operator
(1-B) is necessary. For the selected model, the confi-
dence limits of none of the parameters include either
o or 1 (Table 2), indicating there is no need for a revi-
sion of the model. The other hypothesis for checking is
that if the model is adequate then the residuals
should be white-noise. From the cumulative pen-
odogram, the autocorrelation function and the partial
autocorrelation function of the residuals for the (2,0,0)
(0,1,1)12 model, it was found that all values are well
within the 95 percent confidence limits confirming the
residuals are white noise.

For a trial series of A values and corresponding
time series, the estimates for the parameters in

(2,0,0) (0,1,1)12 model are derived and the particular
white-noise sequence et (Equation 4), the variance
G2(et,A) (Equation 5), and the maximum likelihood
estimates Lmax (A) (Equation 6) of each time series
are computed. The plot of Lm (A) for the trial series
of A values is given in Figure 3 and it can be seen that
the maximizing value A is equal to zero. This confirms
that the application of the (2,0,0)(0,1,1)12 model
requires stationarity of time series obtained by loga-
rithmic transformation.

Using the identified multiplicative SARIMA model
(2,0,0) (0,1,1)12, the logarithmic monthly inflow Z can
be forecasted or generated by the equation

Z =iZt_i-2Zt +Z_12 —iZt_i3 —2Zti4

Figure 3. Plot of the Function Lmax(X) for the (2,0,0) (0,1,1)12
Model of the Z(X)Time Series of Monthly Inflows

(1975 to 193) Into Almopeos Reservoir.

We investigated the use of Equat:ion (17) for fore-
casting monthly inflows of one month ahead for the
final two years (1992 and 1993) of data and compare
these forecasts with inflows that actually occurred. As
we choose to use the final two years (1992 and 1993)
of data for comparing measured inflows with forecast-
ed inflows, we reestimate the parameters for the
(2,0,0) (0,1,1)12 model for the time series of monthly
inflows shortened by one month each time. The new
estimates of parameters for each time series of
monthly inflows shortened by one month differ only
slightly from estimates for the full records (Table 2).
In Figure 4 the one month ahead forecasts of monthly
inflows for the final 24 months (1992 and 1993) are
shown. This figure clearly demonstrates the ability of
the SARIMA model of Equation (17) to forecast well
the final 24 months measured values of inflows.

17 Also, we investigated the use of Equation (17) for
generating synthetic monthly inflows into Almopeos
Reservoir for 50 years. Using the identified multi-
plicative SARIMA model (2,0,0) (0,1,1)12 of Equation
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Figure 4. Comparison Between Measured and One Month Ahead Forecasted
Values of Monthly Inflows (1992 to 1993) Into Almopeos Reservoir.

(17) with the parameter estimates of Table 2 and the
normally independently distributed white-noise resid-
ual et with mean zero and variance = 0.23346, the
synthetic monthly inflows for 50 years have been
obtained. Figure 5 shows the comparison between the
monthly means and the monthly standard deviations
of the measured inflows (1975 to 1993) into Almopeos
Reservoir with that of 100 generated time series (50
years each) of synthetic monthly inflows. It can be
seen that the monthly means and the monthly stan-
dard deviations of the generated synthetic inflows are
close to that of the measured inflows. This confirms
the fact that the selected SARIMA model of Equation
(17) is suitable for generating synthetic inflows into
Almopeos Reservoir.

When sizing reservoirs, by using stochastically gen-
erated inflows, the Hurst estimator K, expressing
their persistence, must be preserved by the inflow
generating model. The Hurst estimator K is estimated
for the Almopeos Reservoir historical yearly inflow
series of 19-year length and its value is K = 0.8313.
The Hurst estimator K for each synthetic yearly
inflow time series of 50-year length is estimated
according to the persistence procedure described and
considering n = 10. The values of K were found to
range from 0.6146 to 0.8093, with a mean of 0.7328
and standard deviation of 0.0356. The R, R, and K

values as averages of all subsequences with n = 10 of
100 replicates of the yearly generated inflow time
series are given in Table 3. The difference between
the estimated K value of the generated yearly inflow
series of 50-year length (0.7328) and the estimated K
value of the historical yearly inflow series of 19-year
length (0.83 13) is due to the sample size, as one inter-
pretation of the Hurst phenomenon (Salas et al.,
1979) accepts that series exhibiting this phenomenon
have K greater than 0.5 for small or moderate values
of sample size and their K converges rapidly to 0.5 as
sample size —oo• Both K values (0.7328 and 0.8313)
estimated of the generated and the historical yearly
inflow series, respectively, are within the Hurst limits
who has found K to range from 0.46 to 0.96 (McLeod
and Hipel, 1978). This confirms the preservation of
Hurst estimator K and proves that the selected SARI-
MA model of Equation (17) is suitable for generating
synthetic inflows into Almopeos Reservoir.

The annual draft requirement for the Almopeos
Reservoir is estimated and taken constant and equal
to 150* 106 m3/year which corresponds to a level of
development a = 0.46 (46 percent) (Equation 13).
Thus, Equation (15) indicates the surplus or deficit of
water into the reservoir at time t. The maximum
range R (Equation 14) of cumulative departures of the
inflow volumes from the draft time series for a
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Figure 5. Comparison Between the Monthly Means and the Monthly Standard Deviations of the Measured
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Replicates of the Monthly Generated Inflow Time Series (50 years each).

sequence of monthly values covering 50 years is
defined to be the storage capacity V required to meet
the annual draft requirement of 150* 106 m3 over 50
years. Thus, 100 values of storage volumes V1,
i =1,. ..,100, have been estimated. The cumulative
probability distribution function of these volumes
Fvj(V) has been then estimated according to the log-
normal distribution which best describes the sample
data of the 100 storage volumes. This cumulative dis-
tribution obtained for the Almopeos Reservoir is
shown in Figure 6 and relates a range of storage vol-
umes reasonable for the Almopeos Reservoir to the
F(v). Thus, instead of a unique volume which is
obtained with the Rippi's method, where the maxi-
mum range is estimated for the historical monthly
inflows sequence only, a probability distribution func-
tion of storages which allows the risk assessment and
decision making in the design (sizing with a pre-cal-
culated design risk) is obtained. For example, by
accepting a risk of 25 percent such that 75 percent of
time in 50 years the storage is sufficient to produce
the required draft of 150*106m3/year, from Figure 6
the design capacity is 180*106m3 which is a reason-
able storage value for the Almopeos Reservoir.

TABLE 3. Estimation of the Hurst Estimato:r K as Average of
100 Replicates of the Yearly Generated Inflow

Time Series Into Almopeos Reservoir.

n S.R R5* K

10 3.3388

3.2804

3.3685

3.4661

2.8079

Average 3.25234 0.7328

CONCLUSIONS

The analysis in this study demonstrates the ability
of multiplicative SARIMA models, in conjunction with
the adequate transformation, to simulate the discrete
time series of historical monthly inflows into a reser-
voir. These models can forecast monthly inflows of one
or more months ahead which would be of help in eval-
uating the optimal real time reservoir operation poli-
cies, in effective utilization of available water,
especially in a multipurpose context and in deriving
the optimal cropping pattern, especially during the
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shortage periods. These models can also generate
sequences of monthly synthetic inflows into a reser-
voir of unlimited duration. These stochastically gener-
ated inflows preserve the key statistics of the
historical monthly inflows and the Hurst estimator K,
expressing their persistence, which is true in the case
of inflow time series. The stochastic reservoir sizing,
which is based on the generated series of monthly
inflows can be used as an alternative to the historical
inflow records, as it provides a probabilistic frame-
work for decision making in the design (sizing with a
pre-calculated design risk) and allows the coping with
the situation where the design horizon of interest
exceeds the length of the historical inflow record.
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