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ABSTRACT: Droughts constitute one of the most important factors
affecting the design and operation of water resources infrastruc-
ture. Hydrologists ascertain their duration, severity, and pattern of
recurrence from instrumental records of precipitation or stream-
flow. Under suitable conditions, and with proper analysis, tree rings
obtained from long living, climate sensitive species of trees can
extend instrumental records of streamflow and precipitation over
periods spanning several centuries. Those tree-ring “reconstruc-
tions” provide a valuable insight about climate variability and
drought occurrence in the Holocene, and yield long term hydrologi-
cal data useful in the design of water infrastructure. This work pre-
sents a derivation of drought risk based on a renewal model of
drought recurrence, a brief review of the basic theory of tree-ring
reconstructions, and a stochastic model for optimizing the design of
water supply reservoirs. Examples illustrate the methodology
developed in this work and the supporting role that tree-ring recon-
structed streamflow can play in characterizing hydrologic variabili-
ty.
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INTRODUCTION AND OBJECTIVES

Droughts, Humans, and the Environment

Droughts are insidious and pervasive. They cause
substantial economic and environmental losses world-
wide (Bryant, 1991). Their frequent and irregular
occurrence has been a prime reason for the construc-
tion of water resources infrastructure intended to
increase the reliability of water supplies in drought
prone areas (Lodiciga and Renehan, 1997; Lodiciga et

al., 2000). The (natural) supply side, that is, precipita-
tion, streamflow, or aquifer recharge, is an important
factor involved in triggering droughts (Dracup et al.,
1980). The demand side is relevant also. Regions with
large populations or intensive irrigated agriculture
require a minimum level of water use to function ade-
quately. Population growth and intensive use of water
as a factor of production are conditions that accelerate
the onset of (stressful) drought conditions. Drought
conditions manifest themselves in various ways:
reduced economic output and productivity, degraded
environmental quality and aesthetics, and public
indebtedness to finance short term, costly, substitute
sources of water, to cite several common ones (Lodici-
ga and Renehan, 1997).

The Paradigm of Climate Prediction in Water
Management

Due to the chaotic nature of the Earth’s climate, it
is not possible to predict the future climate accurately
at regional scales with useful lead times, say, from a
few years to a few decades ahead. Knowledge of the
current climate in any region of the world, used in
conjunction with complex general circulation models
(GCMs) and regional climate simulation models
(RCSMs), cannot be exploited to answer the question
“when will the next drought occur, how long will it
last, and how severe will it be?” (Lodiciga et al., 1996;
Mahlman, 1997; Grassi, 2000). Because of the impos-
sibility of accurate future, long term drought predic-
tion, water planners rely primarily on the study of the
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past climate to gain insights about the probable
future climate. They analyze instrumental records of
precipitation and streamflow — the two key variables
in regional water planning — to extract from them
information about the characteristics of droughts. In
the absence of significant regional climatic change, it
is reasonable to expect observed drought behavior to
repeat itself — in a statistical sense — in the future
(Loaiciga et al., 1993). Therefore, so long as the histor-
ical precipitation and streamflow data sets have ade-
quate temporal and spatial coverage, they constitute
the main and best source of climatic information that
water planners have at their disposal to plan, design,
and manage water resources.

One word of caution is warranted concerning the
use of historical hydrologic data in water resources
planning. It is well established that the Earth’s mean
surface temperature has been increasing following
the last glacial maximum 21,000 years ago (Clark et
al., 1999). Greenhouse emissions by human activities
appear to have contributed to the natural warming
trend, especially since the middle of the 18th Century
with the onset of the Industrial Revolution. In spite of
the uncertainty in long term future climate predic-
tion, simulations of the Earth’s mean surface temper-
ature using leading GCMs suggest a 90 percent
chance that it might increase 1.7 to 4.9°C from 1990
to 2100 (see, e.g., Karl and Trenberth, 2003, for a
review of this matter). Deciphering how such increase
in the mean planetary surface temperature might
affect the incidence of drought at regional scales
remains elusive (Loaiciga et al., 1996). Several
authors (see, e.g., Christensen et al., 2004; Stewart et
al., 2004) contend that modern global warming is like-
ly to impact snowpack and snowmelt dynamics in
western North America in ways that could complicate
water resources management, and, in particular,
increase drought vulnerability. It is known from his-
torical records that the hydrologic cycle of the arid
American West exhibits substantial interannual vari-
ability, drought occurrence, and persistence. Modern
global warming, it appears, may compromise the abili-
ty to deal with water scarcity in the face of growing
human use of freshwater. Lodiciga et al. (1996) pro-
vide practical adaptive responses in water resources
management to cope with potentially heightened
hydrologic uncertainty in a warmer Earth.

The specter of modern global warming notwith-
standing, this work adopts the paradigm “for water
planning, the past is a clue to the future” as a work-
ing hypothesis, within which tree-ring based hydro-
logic reconstructions take preponderant relevance. In
suitable climates — semi-arid and temperate regions
of the western United States are a case in point —
there are long lived species of trees whose annual
growth is recorded and distinguishable as concentric
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annuli (called “rings” in the vernacular) in their main-
stem tissue. The rings’ interannual thicknesses
depend, among other factors, on the amount of surface
moisture — as precipitation or streamflow — a prime
indicator of water and nutrient availability for
biomass production. The precipitation versus tree-
ring growth relationship is the key to precipitation
reconstruction via tree rings. Tree rings may date
back hundreds of years, even millennia, thus allowing
streamflow reconstructions that may predate instru-
mental records by several centuries or millennia. This
provides a widened window to past regional climate,
and, with it, the possibility for a better characteriza-
tion of droughts and of the risk that they pose to
water management. The section “Tree Rings and
Droughts” briefly reviews the basic methodology
employed to make statistical inferences about past
streamflow (or precipitation) based on tree rings.

Objectives

This paper reviews the basics of streamflow recon-
struction using tree-ring data from long living species
of trees sensitive to climatic fluctuations. In addition,
the paper presents a derivation of the drought risk
based on a renewal model of drought recurrence, and
a stochastic optimization model for reservoir design.
Tree-ring reconstructed streamflows are used in
improving the characterization of drought risk and
probability constraints in reservoir design. The proba-
bilistic model of drought occurrence generalizes the
renewal process introduced by Loaiciga et al. (1993)
and Lodiciga and Leipnik (1996). The stochastic reser-
voir model introduces the technique of bootstrapping
to characterize the probabilistic nature of cumulative
streamflow in dealing with probabilistic constraints,
and relies on long, tree-ring reconstructed time series
to estimate the probability distributions of cumulative
annual streamflows.

A DEFINITION OF DROUGHT

Drought is defined in this work as an extended
period of low regional streamflow during which the
natural water supply is not sufficient to meet normal
water needs. Low streamflow may be defined in terms
of below average, below median, or some other appro-
priate quantile. Regional streamflow encompasses the
interaction between precipitation and evapotranspira-
tion at regional scales. It feeds water supply reser-
voirs and sustains riverine ecosystems. It is positively
correlated with precipitation, so that years with below
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median (above median) streamflow also exhibit less
than normal (larger than normal) precipitation, and,
consequently, reduced (increased) ground water
recharge and soil moisture. An “extended period” is
one that causes stress to human and environmental
water use, and it is meaningful only in the context of
specific water supply and water use conditions in a
given regional setting. In regions with multi-year
reservoir carryover capacity, three or more years of
below median streamflow typically give rise to stress-
ful water use. Many parts of California and the semi-
arid western United States exhibit a drought
threshold of three or more years of below median
streamflow (Loaiciga et al., 1992, 1993; Loaiciga and
Leipnik, 1996). The drought threshold can be shorter,
however. Such is the case in regions with poorly diver-
sified water supply sources. A case in point is the
Edwards Aquifer of south-central Texas, one of the
largest sole source aquifers in the United States
(Loaiciga et al., 2000).

There are several drought indicators in common
use. One of them is the Palmer Drought Severity
Index (PDSI) (Palmer, 1965; Karl, 1983, 1986), which
measures the extent of dry weather. The PDSI is fre-
quently used in the assessment of drought hazard for
crop production. The definition of drought used here-
in, on the other hand, is tailored for the analysis,
planning, design, and management of regional water
supply systems with interannual storage carryover
capacity.

The Drought Risk: Theory and Application

Droughts exhibit peculiar probabilistic character-
istics (Sen, 1980; Loaiciga and Leipnik, 1996; Chung
and Salas, 2000). Suppose that annual streamflow fol-
lows a probability density function (pdf) f(q). Let qj
denote the pth quantile of f(q), in which q, could
denote the median, for example (with p = 0.50), or
some other level of streamflow selected to character-
ize drought occurrence. Furthermore, suppose that a
drought occurs whenever there are 6 or more consecu-
tive years whose annual streamflows are less than qp,
Following Loaiciga et al. (1992, 1993) and Loaiciga
and Leipnik (1996), the pdf of the duration D (years),
fp, of a drought is modeled as a truncated exponential
distribution with (shape) parameter a;

-21(x-6) x>0,a;>0 (1)

fpx)=aje

The interarrival time (T) (in years) elapsed
between the ending of a drought and the beginning of
the next drought is a random variable whose pdf is
exponential with parameter ay (Lodiciga et al., 1992,
1993; Loaiciga and Leipnik, 1996).
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fp(x) = ag 2% x>0,a9>0 (2)

The sum of the duration of a drought plus the sub-
sequent interarrival time is the renewal time (R) (in
years), that is, R = D + T. Evidently, the renewal time
is the time elapsed between the end of a drought and
the end of the next one. Its expected value is a mea-
sure of the probabilistic regularity with which
droughts recur. The pdf of the renewal time, fg(x), can
be obtained from the pdfs f)(x) and fp(x) presented in
Equations (1) and (2), respectively, using the facts
that R =D + T and that D and T are independent ran-
dom variables. Generalizing the results of Loaiciga
and Leipnik (1996) from discrete to continuous pdfs,
the pdf of the renewal time is as follows (for a; = ao,
the case of practical interest, although the case a; =
ag is also tractable)

fr(x) = _2132 [ ~(x-0ay _ ,~(x-Oa; x>0
ai;—ag

(3)

The expected value of the renewal time (R) equals the
sum of the expected values of D and T, so that R =60 +
1/a; + 1/ag. The expected renewal time is the (aver-
age) recurrence interval between droughts.

The drought risk in a time interval [0, t], ®;, equals
the probability P[R < t], which, using Equation (3), is

®. — a1a2 1_ e*(t*e)az B 1_ e*(t*e)al t 5 9
¢ ai—ag ag ay

(4)

Figure 1 shows the historical (instrumental) time
series of annual streamflow in the upper Santa Ynez
River (at Bradbury Dam, Cachuma Reservoir), Santa
Barbara County, California, from 1917 through 2000
(Loaiciga, 2002). The numbers 1 through 8 in Figure 1
identify the droughts that occurred between 1917 and
2000, in which the defining criterion for drought was
a run of three or more years with below median annu-
al streamflow (see Lodiciga, 2002, for further justifi-
cation of this criterion). The median annual
streamflow is shown as a horizontal line in Figure 1,
and equals 35.2 million cubic meters. The historical
time series shown in Figure 1 was pooled with a time
series of tree-ring reconstructed annual streamflow
for the upper Santa Ynez River from 1401 through
1916 (Loaiciga et al., 1993; Loaiciga and Leipnik,
1996), to produce a 600-years long pooled time series.
The pooled (tree-ring based and historical) time series
tested positively for statistical stationarity, and
tree-ring reconstructed streamflow preserved the seri-
al correlation and variance characteristics of the
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historical streamflows (Lodiciga et al., 1993; Lodiciga
and Leipnik, 1996).
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Figure 1. Mean Annual Streamflow in the Upper Santa
Ynez River at Bradbury Dam. Droughts are numbered
1 through 8. The median equals 35.2 x 106 m3/yr
and is shown as a horizontal line.

There were 43 droughts between 1401 and 2000 in
the upper Santa Ynez River, for an average drought
interarrival time of approximately 14 years. Drought
recurrence was modeled according to the renewal
model embodied by the pdf in Equation (3) to calcu-
late the drought risk (see Equation 4). The exponen-
tial pdfs (Equations 1 and 2) and the renewal time pdf
(Equation 3) were tested statistically against the 1401
to 2000 streamflow and drought data using the chi-
squared goodness-of-fit test, whose results validated
the proposed pdfs. The estimates of the parameters a;
(in Equation 1) and ay (in Equation 2) were 1.0 and
0.10, respectively. Using these estimates with the
threshold parameter 6 = three years, the drought risk
(see Equation 4) was calculated and plotted as a func-
tion of the time horizon (t) ranging from 6 through
1,000 years in Figure 2.

It is seen in Figure 2 that the probability of at least
one drought 6 = three years long or longer is approxi-
mately 50 percent in any ten-year period, and that it
equals one in any period 50 years long or longer. This
level of drought risk suggests provision of sufficient
reservoir storage to achieve reliable water supply, as
demonstrated later in this article. One of the rewards
of extending streamflow (or precipitation) records by
means of accurate tree-ring reconstructions is the
improved estimation of the pdfs of the drought dura-
tion, the interarrival time, the renewal time, and of
the drought risk in an interval of specified length
with records much longer than historical ones. Fur-
thermore, optimization models for reservoir design
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can be constructed based on the tree-ring extended
time series, as shown in an example below.
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Figure 2. The Drought Risk as a Function
of the Time Interval [0, t].

TREE RINGS AND DROUGHTS

Tree-ring based hydrologic reconstructions rely on
trees whose tree-ring growth is sensitive to precipita-
tion — or its proxy, streamflow — and other ambient
variables, surface temperature among them. Time
series of tree-ring growth are used to reconstruct the
long term behavior of important hydrologic variables
such as streamflow and precipitation. A particular
form of the transfer equation relating, say, streamflow
in a time interval t, denoted by Q; (106m3), the depen-
dent variable), to a set of tree-ring widths, Y (microns)
the predictor variable, is as follows

J K
Q=2 X bjk Yjuk +Vy (5)
=1 k=0

in which b;y is the regression coefficient correspond-
ing to the jth tree-ring sampling site at time t + k,
and v, is a zero mean, constant variance, error term.
The tree-ring widths in Equation (5) can have time
shifts (or lags) of up to size K (years), implying that
the current value of the dependent value (Q;) is
regressed on the current and a small number of
future values of the tree-ring width. Some authors
have included negative lags (i.e., k < 0) in Equation
(5) (see Stockton and Meko, 1983) and additional pre-
dictor variables, such as wood density, besides tree-
ring width (see Loaiciga et al., 1993, for a review of
this subject). The lagged structure of Equation (5)
reflects the multi-year effect that hydroclimatic forc-
ing may have on tree growth. That persistent forcing
is attributed to the physiologic conditioning that
hydroclimatic fluctuations exert on food storage,
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crown area, and the root mass of trees (Fritts, 1976;
Cleveland and Stahle, 1989).

The b coefficients in Equation (5) are estimated
using contemporaneous time series of tree-ring
widths and historical records of streamflow (or precip-
itation, or the PDSI, to cite a few dependent vari-
ables). The estimation of the b coefficients has been
tackled with a variety of statistical and empirical fit-
ting techniques, such as regression analysis and poly-
nomial fitting, aided by principal component analysis
(PCA) and canonical correlations in some instances
(Jones et al., 1984). Following this calibration phase,
long term tree-ring time series predating the period of
instrumental hydrologic recording are used to recon-
struct annual time series of the dependent variable Q;
using the estimated form of the transfer Equation (5).
To illustrate, in the case of a predictor variable sam-
pled at two locations, and with one time lag, the esti-
mated equation used in hydroclimatic reconstruction
would be

Q¢ =b1oY1t +b11 Y11 +booYot +bg 1Yo (6)

in which the “hat” signifies an estimate.

Verification of the predictive skill of the estimated
equation can be performed with a variety of goodness-
of-fit statistics, using persistence coefficients (Hurst
coefficient), and cross validation, to cite common
schemes found in the literature (see Lodiciga et al.,
1993, for a long list of references on this subject). The
pathway to a calibrated and verified estimated equa-
tion with acceptable predictive skill is arduous. Many
confounding issues need be resolved prior to achieving
a relatively accurate tree-ring reconstruction of the
dependent variable Q. The predictor variables (Y) in
Equations (5) or (6) represent averages (or medians or
modes) of tree-ring widths belonging to many trees
found at a sampling location. The raw ring-width data
are detrended and standardized to dimensionless
variables called tree-ring indices prior to averaging.
One common approach to standardization is to divide
a given year’s ring width by that width that would be
expected from a normal decline of ring width in trees
caused by aging. The age induced ring widths impose
a growth trend that must be removed to separate the
growth due to climate forcing from other biologically
driven growth. Techniques for fitting the age driven
growth and for standardization are reviewed in Cook
(1987). The removal of the age induced growth trend
filters out low frequency (that is, long period), climati-
cally induced variability in the tree-ring series. It is
not straightforward to determine how much of the
legitimate climatically induced variability in the
tree-ring series is removed by detrending and stan-
dardization. Concerning this issue, some authors (see
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Michaelsen et al., 1987) claim that most of the vari-
ability on time scales shorter than 100 years is
retained.

Serial and Spatial Correlation

Other issues that influence the statistical analysis
of the tree-ring indices prior to their use in hydrocli-
matic reconstructions are serial and spatial correla-
tion. Serial correlation is due to the dependence of a
tree’s present growth on its growth in previous sea-
sons. The serial (or temporal) correlation in the tree-
ring indices is commonly removed by subtracting the
identified autoregressive component (if any) from the
tree-ring indices. Detrending, standardization, and
removal of serial correlation from a tree-ring series
produce a pre-whitened time series of tree-ring
indices, known as a tree-ring chronology. Some
authors also remove the autoregressive component of
the streamflow time series prior to calibration of the
transfer Equation (5). The autoregressive component
is added later to produce a reconstructed streamflow
with statistical resemblance to the historical stream-
flow. The removal of serial correlation in the tree-ring
or streamflow data is a matter of choice. Model cali-
bration, statistical estimation, and hydroclimatic
reconstruction are possible with serially correlated
data using statistical techniques that are available for
that purpose.

Regional streamflow and tree-ring data exhibit
strong patterns of statistical dependence. Because of
the strong spatial correlation, tree-ring data at one
sampling location can explain a high percentage of
the variance at other locations. The inclusion of a set
of spatially correlated data from all the sampling loca-
tions into a transfer (or regression) equation relating
them to streamflow results in an ill conditioned
regression with meaningless coefficients, the so called
multicollinearity problem. This problem can be over-
come by choosing subsets of data from the complete
set of correlated variables from which multicollineari-
ty is removed. Principal component analysis and
canonical correlation analysis (CCA) are two tech-
niques widely used to cope with multicollinearity. To
illustrate, suppose that PCA is applied to spatially
correlated tree-ring data (denoted by the predictor
variable (Y in Equation 5) to reconstruct streamflow.
Suppose, furthermore, that there are N sampling sta-
tions at which annual ring widths are measured.
Then, there are N principal components of the tree-
ring data. The first principal component is the linear
combination of the N ring widths that explains most
of the variation in ring widths from site to site. A lin-
ear combination of the N ring widths is the weighted
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sum c¢1Yq + ¢9Yg + ... + cNYN, in which the weights ci
are calculated by PCA. The second principal compo-
nent has the largest variance among all linear combi-
nations of the N site ring widths uncorrelated with
the first principal component. In general, the ith prin-
cipal component explains most of the variance among
all the linear combinations of the N site ring widths
uncorrelated with the first, second, ..., (i-1)th princi-
pal components. From the PCA, the hydrologist
retains — for reconstruction purposes — those principal
components that explain most of the tree-ring width
variance. Those are the predictor variables (Y) used in
Equation (5). Further discussion of PCA (and of CCA
as well) can be found in Loaiciga et al. (1993), along
with some examples of tree-ring reconstructions.
There are other complicating phenomena in tree-
ring reconstructions. Forest fires, pests, and disease
that weaken trees and affect tree-ring growth are
examples. The identification of hydroclimatic forcing
in tree rings may require substantial collateral
analysis. The Tree Ring Laboratory of the University
of Arizona (Tucson) and the National Climatic Data
Center (2000) have produced several tree-ring
chronologies for various regions of the United States
potentially useful for hydroclimatic reconstructions.

A STOCHASTIC MODEL FOR
RESERVOIR DESIGN

This section presents a stochastic model for reser-
voir design in which long term, accurate, streamflow
time series are particularly useful. The model can be
used with or without tree-ring reconstructed data,
but, accurate, long term, tree-ring reconstructions can
be effectively integrated in the modeling effort. The
reservoir model’s objective function is the minimiza-
tion of the total present cost of building a reservoir
capacity C (106m3) (this is a positive cost), minus the
revenue stemming from water releases from the
reservoir, which meet beneficial functions. The
model’s decision variables are the reservoir capacity
(C) and the releases x; (106m3), i = 1, 2, ..., n during
the operation horizon. The constraints on the decision
variables are: (1) the probability that the reservoir
storage be less than the reservoir capacity in year i, i
=1, 2, ..., n, must be at least a, in which « is close to
one; (2) the probability that the storage capacity be at
least zero must be equal to or larger than o in each
year of operation (1, 2, ..., n); and (3) reservoir releas-
es (annual values) must be at least equal to a desired
target (annual) value (F in 106m3). The first two sets
of constraints on reservoir storage are probabilistic
and must be converted to their deterministic equiva-
lents prior to the solution of the optimization model.
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The model considers the effect of evaporation from the
reservoir and precipitation onto the reservoir. Follow-
ing Loaiciga (2002), the evaporation during the ith
year (E; in 106m3) is equal to the reservoir unit evapo-
ration (e; in meters) times the average reservoir sur-
face area during that year, calculated as the
arithmetic mean of the beginning of year area (A; 1 in
106m?2) and the end of year reservoir area (A; in
106m2). The area (A in 106m2) versus storage (S in
106m3) relationship is approximately linear, A = a +
b S, in which the coefficients a, b must be estimated
from area and storage data. Likewise, the precipita-
tion during the ith year (P; in 106m3) is the product of
unit precipitation onto the reservoir (p; in m) times
the average reservoir area during that year.

The objective function of the optimization model is,
in which G is the unit cost of building reservoir capac-
ity (US$/106m3), W; is the unit net revenue from
annual reservoir releases (US$/106m3), and s is the
discount rate) (dimensionless)

2 1

min G- C-) :

w.r.t.C, i1 (1+s)
X;,1=1,2,...,n

Wi * Xy (7)

The objective function is subject to the following con-
straints

PS;<C)2a i=1,2,..,n (8)
P(S;>0)>a i=1,2,..,n 9)
x>F i=1,2,..,n (10)

The decision variables C and x; are nonnegative.

To bring the optimization model, Equations (7) to
(10), to solvable form, the probabilistic constraints,
Equations (8) and (9), must be converted to their
deterministic equivalents. To that end, it is useful to
write the dynamic equation of reservoir storage in
terms of the previous storage (S;.;) and fluxes in and
out of the reservoir (those are: known diversions from
the reservoir, D;; evaporation, E;; precipitation, P;;
streamflows, Q;; and water releases, x;)

Si=si_1+Qi+Pi-Di-Ei-Xi 1=1, 2,...,11 (11)
Equation (11) is initialized with S, the starting stor-
age, which is specified by the analyst as a fraction (g,
0 < g <1) of the reservoir capacity. Typically, the start-
ing storage is set equal to one half of the reservoir
capacity, Sg = 0.5 C. The evaporation E; = 1/2 (A;; +
A;) e; and the precipitation P; = 1/2 (A;; + A)) p;. The
unit reservoir evaporation (e;) and precipitation (p;)
are data that must be specified by the analyst. If not
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available for the entire horizon i = 1, 2, ...., n, they
can be replaced by their averages calculated from
instrumental records without great effect on the
model’s solution. The surface area of the reservoir and
the reservoir storage are related by the equation A; =
a+ b S, j =1-1 or i. Successive substitution of the
beginning of period storage in Equation (11) leads to
the formulation of the storage equation in terms of
the initial storage (Sy =g C)

i i i i
S; =vigC+ Y TeorQx — X, T0r Dy — D Tibrxy + Y, Giox (12)
k=1 k=1 k=1 =
fori=1,2, ..., n, in which
[ 2 T Qy < q(l)] (19)
b
i | 1+(px - ek)g
vi=[l|—— (13)
k= - Pemen) {Z Ty 0k Qx <af’ }= 1-a (20)
k=1
. b (i) o
i 1+( Dy —er)— q,, and q, are the 1-a and a quantiles, respectively,
0p = H g k=12, ., withd; =1 of a hnear comblnatlon of 1 streamflows.
r=k+1{ 1-(p, — ;)= The bootstrapping method (Efron, 1983) is well
2 (14) suited for the estimation of those quantiles, which
requires a sufficiently long time series of streamflows.
Long time series (i.e., spanning several centuries)
Gy = M (15) from tree-ring reconstructions are particularly useful
1— (Pk _ ek)h in this regard. The bootstrapping method adapted to
2 the optimization model is described by the following
computational algorithm: (1) for i = 1, use the (esti-
1 mated) pdf of the entlre streamflow time series to
T, = _ (16)
k= 1 b estimate qi)a and qa ;(2) fori=1+ 1, draw randomly
~ (i —ex) 2 (with replacement) from the time series of n stream-

Equation (12) is substituted in the probabilistic
constraints, Equations (8) and (9). The deterministic
equivalent of Equation (8) becomes (with Sp =g C)

i i i
(1-gy;)C+ Y Tiorxy 2qi = Y T Dy + Y Gy
k=1 k=1 k=1

a7

fori=1,2,...,
g C)

n, and that of Equation (9) is (with Sy =

i . i i
—gy;C+ Y, Tyoxy < q(fla - Y Teox Dk + Y Gioy
k=1 k=1 k=1

(18)
fori=1,2, ..., n. The quantiles q; W and q appearing

in Equations (17) and (18) are deﬁned by the follow-
ing probabilistic statements
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flows a large number M of samples (e.g., M = 200)
each containing i streamflow values and for each sam-
ple calculate the following linear combination of the
streamflow values (q in 106m3)

> Tiokax (21)
k=1

(3) fit a theoretical pdf (gamma, lognormal, or other)
to the M values of the linear combinations written in
Equation (21), test the pdf with a goodness of-fit test
(e.g., chi squared), and estimate ql) and qa); and
(4) repeat Steps (2) and (3) until i = n. At this point,
the deterministic constraints in Equations (17) and
(18) can be stated numerically and the linear pro-
gramming problem whose objective function is
described in Equation (7), subject to the constraints of
Equations (17), (18) and (10), can be solved.
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Example of Reservoir Design

The reservoir design model presented above was
applied to the upper Santa Ynez River basin of Cali-
fornia. Lodiciga (2002) described the upper Santa
Ynez River basin from a water resources viewpoint, in
conjunction with the development of a nonstochastic
reservoir design model. The stochastic model of this
section extends the work of Loaiciga (2002). The data
used in the stochastic model were: (1) g = 0.5, thus,
the initial storage was set equal to one half of the
(unknown) reservoir capacity; (2) the annual down-
stream water requirement F = 2.932 x 106m3 and the
annual reservoir diversion (constant) D; = D = 39.825
x 106m3; (3) the cost factors G = US$ 1.3 x 106 per
106m3 of reservoir capacity and (constant) W; = W =
US$ 1.3 x 106 per 106m3 of reservoir release; (4) a =
1.3007, b = 0.05054 in the area (in 106m?2) versus stor-
age (in 106m3) equation; (5) n = 84, the number of
years in the optimization horizon (1917 to 2000); (6)
the discount rate s = 0 (i.e., no discounting); (7) reser-
voir evaporation (e;) and precipitation (p;) data from
Loaiciga (2002); and (8) the distributions of the sums
of annual streamflows were derived using the boot-
strapping method described above, in which the his-
torical record of annual streamflow in the upper
Santa Ynez River (1917 to 2000, see Figure 1) was
pooled with a 1401 to 1916 tree-ring reconstruction of
streamflow for that same river (introduced above, see
Loaiciga et al., 1993; Loaiciga and Leipnik, 1996).
This produced a 600-year long streamflow data set
used to bootstrap the distributions of the sums of
streamflows that appear in the optimization model.

Figure 3 shows the optimized reservoir capacity as
a function of the probability level o ranging from 0.75
to 0.99. The graph in Figure 3 indicates that as the
probability level (also called reliability) becomes clos-
er to 1, the reservoir capacity increases in a nonlinear
fashion. The increasing trend in reservoir capacity
with increasing reliability reveals that as the uncer-
tainty of undesired reservoir performance is
decreased — in this case by increasing the probability
in the model’s constraints — the size of the reservoir
must increase. In other words, there is an increasing
premium associated with the reduction of the likeli-
hood of poor performance.

To put the results of Figure 3 in perspective, the
reservoir capacity was determined using the (deter-
ministic) mass curve method (see, e.g., Linsley and
Franzini, 1979). Figure 4 shows the mass curve for
the upper Santa Ynez River. The mass curve is the
cumulative annual streamflow plotted as a function of
time. The dotted line shown as a tangent to the mass
curve has a slope of 52 x 106m3/yr, which equals the
annual demand of Santa Ynez River water (including
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evaporative losses). The maximum vertical departure
between a tangent to the mass curve and the mass
curve equals the necessary reservoir capacity to meet
a specified annual demand of river water. That reser-
voir capacity is represented by the vertical line in Fig-
ure 4, directly above 1950, and equals 290 x 106m3,
the design capacity of the existing Cachuma Reservoir
behind Bradbury Dam in the upper Santa Ynez River.
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Figure 3. Reservoir Capacity Versus the Constraint Probability
() Obtained With the Optimization Model.
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Figure 4. Mass Diagram and Reservoir Capacity
Determination (290 x 106m3), Upper Santa
Ynez River at Bradbury Dam, California.

The existing reservoir capacity is about one tenth
of the reservoir capacity found with the stochastic
reservoir model for a probability level o = 0.75 (see
Figure 3). Only that portion of the mass curve
between 1940 and 1960 is shown in Figure 4 to attain
adequate visual resolution. The entire mass curve,
from 1401 through 2000, underwent the same type of
analysis shown in Figure 4 in search of the required
reservoir capacity. Fortuitously, the critical period
within which the mass curve reservoir capacity lies is
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1940 to 1960. Pooling of the tree-ring reconstructed
streamflow (1401 to 1916) with the historical stream-
flow time series changed the level of the mass curve,
but it did not alter the maximum vertical departure
between tangents to the mass curve and the mass
curve itself.

The model optimized reservoir capacities (see Fig-
ure 3) are at least one order of magnitude larger than
the mass curve determined capacity, which happens
to be the size of Cachuma Reservoir in the upper
Santa Ynez River. Evidently, the stochastic treatment
of reservoir inflows and the imposition of probabilistic
constraints call for reservoir capacity larger than that
obtained with the mass curve method (which treats
reservoir inflows deterministically and does not
impose explicit constraints). This is consistent with
previous research pointing to the conservativeness of
reservoir capacity determination using probabilisti-
cally constrained methodology such as that presented
above (see, e.g., Loaiciga, 1988). The performance of
the existing Cachuma Reservoir in the upper Santa
Ynez River has shown that additional reservoir capac-
ity is indeed needed to meet fisheries and water sup-
ply requirements with acceptable reliability. In fact,
the steelhead trout population (Oncorhynchus mykiss)
has dwindled to near extinction downstream from the
Cachuma Reservoir due to insufficient reservoir
releases. Moreover, several cities depending on upper
Santa Ynez River streamflow have had to search for
additional water sources to mitigate shortages caused
by frequent droughts. Those sources include inter-
regional water imports and desalination of ocean
water (Lodiciga and Renehan, 1997). Disputes over
the environmental impacts of raising Bradbury Dam
to enlarge Cachuma Reservoir have effectively pre-
vented the development of additional storage capacity.

CONCLUSION

This paper has: (1) reviewed methodology for tree-
ring reconstructions of streamflow; (2) developed a
formula to quantify drought risk based on the renewal
model of drought recurrence, and tested the formula
with pooled historical and tree-ring reconstructed
streamflow time series; and (3) developed a stochastic
model for reservoir design in which bootstrapping of
flow quantiles was aided by pooling tree-ring recon-
structed and historical streamflows. Two examples of
the methodology presented in this article demonstrat-
ed that reconstructed streamflows featuring good pre-
dictive skill are valuable in assessing the probabilistic
nature of drought recurrence and improving the
parameterization of stochastic reservoir models.
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