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CONDITIONAL DISTRIBUTIONS OF IDEAL RESERVOIR

STORAGE VARIABLES

By M. Bayazit1 and B. Önöz2

ABSTRACT: Storage capacity, yield, and reliability of a reservoir are random variables. Conditional distributions
of these variables are studied by Monte Carlo simulation for operating periods up to 100 years. It is shown that
these distributions are affected by the length of the period of operation due to the assumption of an initially full
reservoir. Results of the study will aid in the reliability based reservoir design by clarifying the connection
among the storage variables. The relationship between the steady-state reliability and the probability of failure-
free operation over an N-year planning period is also investigated, and it is shown that the effect of the initial
storage can be neglected only when the ratio of regulation is low.
INTRODUCTION

Storage reservoirs are important components of water re-
source systems. In the design of reservoirs, the risk of failure
should be taken into account as a reservoir of a given size can
provide a certain yield only with a certain probability because
of the random nature of inflows.

Engineers usually design a reservoir to regulate the ob-
served series of streamflows, in which case the risk of failure
cannot be determined. The population characteristics of flows
must be considered when a probabilistic design is required. In
this case storage capacity, yield, and risk are dependent ran-
dom variables. The joint and/or conditional probability distri-
butions of these variables should be known to make meaning-
ful decisions. The objective of this study is to investigate the
conditional distributions of these variables for an ideal reser-
voir operated with the standard policy when inflows are in-
dependent normal variables. Results are expected to clarify the
relationship among the storage variables.

In earlier studies, Pegram (1980) and Pegram et al. (1980)
defined the basic variables for storage calculations and intro-
duced their nondimensional forms. Klemes (1981) presented a
state-of-the art report. Bayazit (1982), Vogel and Stedinger
(1987), and Bayazit and Bulu (1991) obtained capacity-yield-
risk relationships for ideal reservoirs. Most of these studies
make an assumption that a reservoir that is full in the begin-
ning of the operation period.

The paper starts with the definition of the variables in the
study. The steady-state probability of success and the proba-
bility of success for a finite operating period are introduced as
two different but interrelated concepts, both of which have
been used in reservoir design studies. The steady-state prob-
ability of success is obtained as a function of reservoir capacity
and yield by simulation, and it is compared with earlier results.
The conditional probability distributions of the storage varia-
bles are then obtained for finite operating periods up to 100
years by simulation for certain combinations of the values of
these variables. The simulation results are presented in the
form of graphs and tables. It is shown on an example how the
information obtained in this study can be employed in reser-
voir design.

The final part of the paper concerns the investigation of the
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relationship between the steady-state and finite period proba-
bilities of success. It is shown that an earlier result that has
been widely used is valid only for small yields because of the
effect of the initial storage.

BASIC CONCEPTS

An ideal reservoir is a concept that is frequently used in the
preliminary stages of reservoir design for over-year regulation.
All losses from the reservoir are neglected or subtracted from
the inflow. The reservoir is operated with the standard policy,
such that the release is equal to the chosen target (yield) when
the available water (storage content in the beginning of the
year plus the inflow during the year) is sufficient, called the
‘‘success’’ or ‘‘regular state’’; otherwise, the reservoir is emp-
tied, with the occurrence of the failure state.

For any reservoir the storage variables K (storage capacity),
Y (yield), and p (reliability defined as the annual probability
of success) are interrelated. With the increase of the operating
period N, the reliability will approach a steady-state value ps

for given K and Y. For a certain inflow model (probability
distribution and autocorrelation structure) and a chosen initial
condition (initial reservoir content), the relationship between
the storage variables can be expressed as (Klemes 1981)

p = f n(K, m , s , Y ) (1)s x x

where mx and sx = mean and standard deviation of annual
inflows, respectively.

The above equation can be made nondimensional as follows
(Pegram et al. 1980):

p = f n(K , C , Y ) (2)s s v x s

where Ks = K/sx; Cv x = sx /mx; and Ys = Y/sx. Introducing the
parameter m = (mx 2 Y)/sx (Pegram et al. 1980), (2) can be
rewritten as

p = f n(K , C , m) (3)s s v x

The probability of success p in any year equals the proba-
bility of available water exceeding the required yield P[V 1
x $ Y], where V is the reservoir storage at the beginning of
the year, and x is the inflow during the year. For normally
distributed inflows, this probability can be written as

x 2 m Y 2 m Vx x
p = P[V 1 x $ Y] = P[x $ Y 2 V] = P $ 2F Gs s sx x x

V V
= P z $ 2m 2 = 1 2 F 2m 2F G S Ds sx x (4)

where z = standard normal variate; and F = standard normal
cumulative distribution function. It is seen that for normal in-
flows it suffices to consider the variable Cv x = sx /mx in the



TABLE 1. Steady-State Reliability ps as Function of Ks and m

Ks

(1)

m

0.0
(2)

0.2
(3)

0.4
(4)

0.6
(5)

0.8
(6)

1.0
(7)

0.25 0.549
0.549
0.550

0.633
0.635
0.635

0.711
0.714
0.713

0.780
0.783
0.783

0.839
0.841
0.843

0.885
0.887
0.887

0.50 0.595
0.596
0.597

0.684
0.686
0.687

0.763
0.766
0.766

0.830
0.832
0.832

0.882
0.884
0.884

0.921
0.923
0.922

1.00 0.675
0.675
0.675

0.770
0.773
0.772

0.846
0.851
0.848

0.903
0.907
0.905

0.942
0.944
0.943

0.967
0.968
0.967

2.00 0.776
0.775
0.776

0.874
0.879
0.875

0.937
0.943
0.938

0.972
0.976
0.972

0.988
0.990
0.988

0.996
0.996
0.995

4.00 0.863
0.857
0.863

0.954
0.955
0.954

0.988
0.990
0.988

0.998
0.998
0.997

;0
—
—

;0
—
—

8.00 0.923
0.917
0.923

0.992
0.992
0.991

;0
—
—

;0
—
—

;0
—
—

;0
—
—

16.00 0.959
0.955
0.959

;0
—
—

;0
—
—

;0
—
—

;0
—
—

;0
—
—

Note: The first entry in columns 2–7 is simulation result of present
study, middle entry is from Buchberger and Maidment (1989), and lower
entry is from Pegram (1980).

parameter m. Thus, (3) can be simplified in the case of normal
inflows as

p = f n(K , m) (5)s s

Table 1 shows the relationship between Ks and ps for m =
0(0.2)1 obtained by Monte Carlo simulation with independent
normally distributed flows (each simulation run was
10,000,000 years long). The agreement with the diffusion ap-
proximation results of Buchberger and Maidment (1989), and
particularly with the finite-difference equation solutions of Pe-
gram (1980), is very good.

DISTRIBUTIONS OF STORAGE VARIABLES FOR
CERTAIN OPERATING PERIOD

For a finite operating period of N years, the storage variables
Ks, m, and pN (reliability over N years, defined as the proba-
bility that no failure occurs in N years or that the reservoir
supplies the required yield throughout the operating period)
are random variables. For given values of two of these vari-
ables, the conditional probability distribution of the remaining
variable can be obtained. Thus, the cumulative distribution
functions F(Ksum, pN), F(muKs, pN), and F(pNuKs, m) are de-
fined for certain period N.

Limited information is available concerning these distribu-
tions. Most of the studies have been carried out for the case
of perfect reliability (pN = 1), also called deficit analysis. Vogel
(1985) developed expressions for the distribution F(Ksum, pN

= 1) in the case of AR(1) normal inflows. Bayazit (1982) and
Bayazit and Bulu (1991) investigated the same function for
normal and lognormal autoregressive [AR(1)] and autoregres-
sive moving average [ARMA(1,1)] inflows, N = 25 and 50
years. Vogel and Stedinger (1987) derived expressions for
F(KsuCv x, m, pN = 1), N # 100 years for the lognormal AR(1)
model. Phien (1993) generalized the study to gamma inflows.
A three-parameter lognormal distribution was found to fit quite
well to the function F(Ksum, pN = 1) for all inflow models
investigated in these studies.

Recently, Pretto et al. (1997) obtained certain quantiles of
the distribution F(KmuCv x, m, pN) for pN = 0.90 and 0.95, N =
10–5,000 years, in the case of AR(1) normal and lognormal
inflows, where Km = K/mx. They found that for m # 0.5, the
mean and upper quantiles of the storage capacity had a down-
ward bias for small N, and an upward bias for larger N before
the convergence to a steady level, whereas the median and
lower quantiles of Km always showed a downward bias.

STATISTICAL PROPERTIES OF STORAGE
VARIABLES FOR SHORT OPERATING PERIODS

Most reservoirs have design periods less than N = 100 years.
In this section the relationship among the storage variables Ks,
m, and pN for such short operating periods is analyzed. For
this purpose a Monte Carlo simulation study is carried out for
certain combinations of the values of these variables to deter-
mine their conditional distributions.

In all of the simulations, inflows were generated by an in-
dependent normal model as the earlier studies showed that the
behavior of the variables was similar for all inflow models. N
was varied in the range N = 25(25)100. The parameter m was
equal to 0.25 to characterize the reservoirs with medium re-
silience, just above the value of 0.2, below which the two-
state Markov model was found to be inadequate to represent
the structure of failure sequences (Vogel and Bolognese 1995);
values of m smaller than 0.25 are avoided in practice. The
reliability was chosen as pN = 0.95–1.0 because a risk of fail-
ure over N years of about 5% is usually tolerated. The reser-
voir was assumed to be full initially, as usual in the deficit
analysis. In each simulation the inflow sequence of N years
was routed twice through the reservoir, and the reliability was
estimated only for the second cycle, with the expectation that
the influence of initial conditions would be removed by con-
catenating the inflow sequence with itself (Pretto et al. 1997).
Three conditional probability distribution functions were in-
vestigated for the selected values of the parameters, as de-
scribed below. For each set of parameters the number of sim-
ulations was 50,000.

Distribution F (pN uKs, m)

This function is useful in practice for determining the dis-
tribution of the reliability of a reservoir of given capacity sup-
plying a certain yield.

A reservoir of capacity Ks = 3 was operated for a yield
corresponding to m = 0.25 over N years, N = 25(25)100. The
steady-state reliability for this case is ps = 0.94 from Table 1.
The distribution functions F(pNuKs = 3, m = 0.25), determined
by simulation, are shown in Fig. 1, and the quantiles of pN are
given in Table 2.

All of the distribution curves intersect at about pN = 0.92,
below which F values decrease as N increases; whereas above
pN = 0.92, F values increase with N. Although the mean of pN

is always equal to the steady-state reliability, the quantiles vary
with N. q0.10 increases from 0.84 for N = 25 to 0.89 for N =
100. q0.25 remains practically constant, whereas the median and
upper quantiles decrease as N increases. These results are in
agreement with those of Pretto et al. (1997) for m below about
0.5. The minimum value of the reliability in 50,000 simula-
tions increases considerably with N, from 0.36 for N = 25 to
0.67 for N = 100.

In the study, the probability of perfect reliability P[pN = 1uKs

= 3, m = 0.25] was also determined. This probability drops
from 0.502 for N = 25 to 0.063 for N = 100 years.

Distribution F (m uKs, pN)

This function is important for determining the distribution
of the yield that a reservoir of a given capacity can supply
with a certain reliability over N years.
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FIG. 1. Conditional Distribution of pN for Ks = 3 and m = 0.25
TABLE 2. Statistical Characteristics of Distribution F (pN uKs =
3, m = 0.25)

Parameter
(1)

N

25
(2)

50
(3)

75
(4)

100
(5)

Mean 0.94 0.94 0.94 0.94
q0.90 1.00 1.00 1.00 0.995
q0.75 1.00 1.00 0.99 0.98
q0.50 1.00 0.97 0.96 0.95
q0.25 0.93 0.92 0.92 0.92
q0.10 0.84 0.87 0.88 0.89
Minimum 0.36 0.52 0.55 0.67

The same reservoir of capacity Ks = 3 was operated for N
years with yields corresponding to various values of m in the
range m = 0–0.9, corresponding to over-year regulation. In
each simulation the reliability pN was evaluated. Then the ratio
of the runs with pN $ 0.96 and pN = 1.0 were determined.
Thus, the distribution F(muKs = 3, pN) was obtained for pN =
0.96 and pN = 1, N = 25(25)100 (Figs. 2 and 3). Simulation
results are summarized in Table 3 for pN = 0.96, and in Table
4 for pn = 1.

For the reliability pN = 0.96, all of the distribution curves
intersect at about m = 0.5, above which F increases slightly
with N, whereas below m = 0.5 the probability F decreases
with the increase of N. The lower quantiles and median of m
increase with N. This means that as the design period in-
creases, the probability that the yield that can be supplied with
a reliability of pN = 0.96 over an N-year period exceeds a given
value, decreases for values of m below about 0.5. Higher quan-
tiles remain almost constant or decrease slowly as N increases.

For perfect reliability (pN = 1), all of the quantiles increase
with the operating period N. This increase is more pronounced
than in the case of pN = 0.96. As an example, F(0.5) = 0.80
for N = 25 years, and F(0.5) = 0.42 for N = 100 years. Thus,
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the probability that a yield corresponding to m = 0.5 or a larger
yield can be guaranteed over a 25-year period is 0.80, whereas
it is only 0.42 for a 100-year period.

Distribution F (Ksum, pN)

This function gives the distribution of the capacity of a res-
ervoir that supplies a given yield with a certain reliability over
N years.

The distribution of the reservoir capacity Ks for perfect re-
liability over N years (pN = 1) was determined by application
of the sequent peak algorithm to two cycles of inflow se-
quences of length N = 25(25)100 years. The distribution func-
tion F(Ksum = 0.25, pN = 1) is plotted in Fig. 4 and its quantiles
are given in Table 5.

All of the quantiles of Ks are seen to increase significantly
as N increases. For example, the median is Ks = 3.00 for N =
25, and Ks = 5.12 for N = 100. The mean is always higher
than the median, indicating that the conditional distribution of
the reservoir capacity is positively skewed. In fact, it is known
that Ks corresponding to pN = 1 is lognormally distributed with
a skewness of 1.625 (Bayazit and Bulu 1991).

Comments

Using the conditional distribution functions derived above,
statements of the following kind can be made, which are ba-
sically equivalent.

1. The probability that a reservoir of size Ks = 3 can supply
a yield corresponding to m = 0.25 with a reliability pN =
1 (or higher, which is of course not meaningful in this
case) over N = 25 years is 0.50 (Fig. 1).

2. The probability that a reservoir of size Ks = 3 can supply
with perfect reliability (pN = 1) a yield corresponding to
m = 0.25 (or a larger yield) over N = 25 years is 0.50
(Fig. 3).



FIG. 2. Conditional Distribution of m for Ks = 3 and pN = 0.96

FIG. 3. Conditional Distribution of m for Ks = 3 and pN = 1
3. The probability that a reservoir of size Ks = 3 or smaller
will be needed to supply a yield corresponding to m =
0.25 with perfect reliability (pN = 1) over N = 25 years
is 0.50 (Fig. 4).
Note that the probability in the above statements would be
equal to 0.25, 0.13, and 0.06 over N = 50, 75, and 100 years,
respectively, indicating the effect of the reservoir being ini-
tially full.
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TABLE 3. Statistical Characteristics of Distribution F (m uKs =
3, pN = 0.96)

Parameter
(1)

N

25
(2)

50
(3)

75
(4)

100
(5)

q0.90 0.50 0.50 0.50 0.48
q0.75 0.33 0.36 0.38 0.38
q0.50 0.15 0.22 0.25 0.27
q0.25 0.00 0.10 0.12 0.14
q0.10 0.00 0.00 0.05 0.09

TABLE 4. Statistical Characteristics of Distribution F (m uKs =
3, pN = 1)

Parameter
(1)

N

25
(2)

50
(3)

75
(4)

100
(5)

q0.90 0.64 0.77 0.83 0.90
q0.75 0.45 0.58 0.65 0.71
q0.50 0.25 0.40 0.49 0.54
q0.25 0.07 0.25 0.34 0.41
q0.10 0.00 0.12 0.22 0.30

EXAMPLE

A reservoir is to be designed for a period of N = 50 years.
The annual inflows are normally distributed with mx = 1,050
and sx = 200, there is no serial correlation. The desired annual
yield is Y = 1,000. The reservoir storage capacity is chosen as
K = 600 (all figures are in 106 m3). The reservoir is assumed
to be full in the beginning of the operation period.

Nondimensional parameters have the values Ks = K/s =
600/200 = 3, m = (mx 2 Y)/s = (1,050–1,000)/200 = 0.25.

1. The steady-state reliability is ps = 0.94 from Table 1,
implying that the annual probability of success will ap-
proach 0.94 as the effect of initial condition vanishes.
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But this value is approached asymptotically, and it would
be interesting to know the conditions in the first 50 years.

2. What is the value of the reliability in the design period
p50? p50 is a random variable. From Table 2 its mean is
0.94, it will be higher than 0.92 with a probability of
0.75, higher than 0.97 with a probability of 0.50, and
equal to 1.0 with a probability of 0.25. There is a 25%
chance that the reservoir will never be emptied during
the period of 50 years, for a yield of 1,000.

3. What is the yield that can be supplied with perfect reli-
ability (p50 = 1) over 50 years? From Table 4, m will be
less than 0.25 with a probability of 0.25, less than 0.40
with a probability of 0.50, and less than 0.58 with a
probability of 0.75. There is a 25% chance that the sup-
plied yield will exceed 1,000, a 50% chance that it will
exceed 970, and a 75% chance that it will exceed 934
throughout the design period.

4. Let it be assumed that a risk of 0.04 is allowed in 50
years, corresponding to p50 = 0.96. Now we can read
from Table 3 that m will be less than 0.10 with a prob-
ability of 0.25, less than 0.22 with a probability of 0.50,
and less than 0.36 with a probability of 0.75. Therefore,
the yields that can be provided with 25, 50, and 75%
chances are raised to 1,030, 1,006 and 978, respectively,
as a result of accepting a 4% risk of failure in the design
period.

5. If perfect reliability is required, what is the storage ca-
pacity that will provide a yield of 1,000? This capacity
is a random variable. From Table 5, its mean is Ks =
4.53 (K = 906), it will be less than Ks = 3.00 (K = 600)
with a probability of 0.25, less than Ks = 3.99 (K = 798)
with a probability of 0.50, and less than Ks = 5.44 (K =
1,088) with a probability of 0.75.

The tables and figures provided in this paper are only for
the case of Ks = 3 and m = 0.25. It is possible to prepare
similar graphs for other combinations of the variables, other
inflow models, and different initial conditions, but this would
FIG. 4. Conditional Distribution of Ks for m = 0.25 and pN = 1



TABLE 5. Statistical Characteristics of Distribution F (Ksum =
0.25, pN = 1)

Parameter
(1)

N

25
(2)

50
(3)

75
(4)

100
(5)

Mean 3.59 4.53 5.14 5.60
q0.90 6.14 7.23 7.98 8.53
q0.75 4.31 5.44 6.14 6.66
q0.50 3.00 3.99 4.63 5.12
q0.25 2.11 3.00 3.55 4.00
q0.10 1.55 2.35 2.85 3.25
Maximum 29.46 38.23 43.33 34.33

require too much effort and space. The purpose here is to
clarify the relationship among the variables pN, Ks, and m, and
to illustrate how such information could be used in the prelim-
inary design of reservoirs.

RELATIONSHIP BETWEEN ps AND P[pN = 1]

Considering a reservoir of capacity K supplying a yield cor-
responding to a given value of m for a period of N years, the
probability of no-failure operation throughout the operating
period P[pN = 1], in the case of the initially full condition, is

P[p = 1] = P[S ù S ù ? ? ? ù S uV = K] (6)N 1 2 N 0

where Si denotes regular (successful) operation in year i; and
V0 = initial reservoir content. Vogel (1987) argued that the
‘‘steady-state’’ probability of failure-free operation over an N-
year planning period equals the probability of normal opera-
tion in the first year ps, multiplied by the probability that sub-
sequent years remain free of failures

N21P[p = 1] = p (1 2 f ) (7)N s

where f = probability that a failure year follows a regular year.
Comparing (7) with (6), it is seen that the effect of the initial
condition is neglected and the probabilities of success are ex-
pressed in terms of steady-state probabilities.

Vogel and Bolognese (1995) used the probabilities P[pN =
1] obtained by Vogel (1985) for normal inflows, and by Vogel
and Stedinger (1987) for lognormal inflows to compute the
probabilities ps by (7), and then compared them with their
Monte Carlo-simulation results and the results of Pegram
(1980) and Buchberger and Maidment (1989). They found that
(7) was useful in converting the no-failure reliability over an
N-year planning period to steady-state reliability ps for values
of m in excess of 0.2. They argued that the two-state Markov
model used in deriving the equation could not provide an ade-
quate description of reservoir failures in the case of low resil-
ience (m < 0.2) because such systems may take several years
to refill once empty.

The results of the present study are used to check the above
equation for m = 0.25, in which case a satisfactory agreement
would be expected according to the findings of Vogel and Bol-
ognese (1995). Table 6 shows the simulation results P[pN = 1]
for Ks = 3, n = 25(25)100, compared with the corresponding
values obtained from (7) with ps = 0.94 read from Table 1,
and f = 0.60 (1 2 ps)/ps = 0.037, where 0.60 is the probability
that a regular year follows a regular year for independent nor-
mal inflows in the case of m = 0.25 (1 2 F(20.25) = 0.60).
It is seen that the estimates of (7) are substantially lower than
the simulation results for all values of N, in contradiction to
the findings of Vogel and Bolognese (1995). The reason why
the probabilities of no-failure operation over an N-year period
estimated by (7) do not agree with the simulation results is
that the effect of the initial condition (full reservoir) leads to
much higher reliabilities in the simulations. Routing the flow
sequence twice through the reservoir and estimating the reli-
TABLE 6. Simulation Results for P [pN = 1] Compared with Eq.
(7)

(1)

N

25
(2)

50
(3)

75
(4)

100
(5)

P [pN = 1] (simulation) 0.502 0.250 0.128 0.063
P [pN = 1] [Eq. (7)] 0.381 0.149 0.058 0.023

ability only for the second cycle is apparently not sufficient to
remove the influence of initial conditions.

Vogel and Bolognese (1995) compared the steady-state re-
liability ps, estimated by (7), with the simulation results, and
found good agreement for m > 0.2. The reason for this is that
the equation is not sensitive to differences in P[pN = 1] when
solved for ps. In fact, when the simulation results of the present
study are used to estimate ps using (7), a value of ps = 0.955
is found with P[pN = 1] of N = 25 and 50, and ps = 0.956
with P[pN = 1] of N = 75 and 100, which are not much dif-
ferent from the true reliability ps = 0.94.

It can be concluded that (7) should not be used to estimate
the probability of no-failure operation over an N-year period,
even for values of m in excess of 0.2. Only for much higher
values of m close to 1.0 does the agreement become satisfac-
tory because the reservoir will soon be filled whatever the
initial condition is.

CONCLUSIONS

For finite operating periods, the variables relevant to res-
ervoir design (storage capacity, yield, and reliability) have ran-
dom character. Assuming that the reservoir is initially full, the
behavior of their conditional probability distributions is stud-
ied by simulation for certain values of the variables that are
meaningful in reservoir design. It is seen that these distribu-
tions vary with the length of the period of operation because
the reservoir is assumed to be full in the beginning. The results
shed light on the probabilistic behavior of the storage variables
and can aid in making decisions in reservoir design problems.

The equation given by Vogel (1987) for the relationship
between steady-state and finite period probabilities is shown
to give satisfactory results only when the ratio of regulation
is low (m ; 1 or higher).
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APPENDIX II. NOTATION

The following symbols are used in this paper:

Cv x = coefficient of variation of annual inflows, sx /mx;
F = probability distribution function;
K = reservoir storage capacity;

Km = K/mx;
Ks = K/sx;
m = (mx 2 Y)/sx;
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N = reservoir operating period;
P = probability;
p = annual reliability;

pN = reliability over N years;
ps = steady-state reliability;
qi = ith quantile;
Si = success in year i;
V = storage in beginning of year;

V0 = initial reservoir storage;
x = annual inflow;
Y = yield;

Ys = Y/sx;
z = normal variate;

mx = mean of annual inflows;
sx = standard deviation of annual inflows; and
F = standard normal distribution function.


