CVEN 4838/5838 Dam Engineering Fall 2008
Homework #1 Basin Yield
DUE: Thurs Sept 4

Problem 1.

Using the data from Example 3.5 in McMahon and Adeloye, compute the storage yield function
(plot of storage vs firm yield) with 4 points. What is the maximum yield? (Note: this goes really
fast and easy in Excel.)

Problem 2.

Next assume that each year has two distinct hydrologic seasons, one wet and the other dry, and
that 80% of the annual inflow occurs in season t = 1 and 80% of the yield is desired in season t =
2. Pick one capacity/yield point calculated in Problem 1 and determine the reliability using each
half year as a single time period. (Recall that in Problem 1 the firm yield represents a reliability of
100%).

Problem 3.
Determine the increase in storage capacity required for the same annual (firm) yield resulting
from within-year redistribution requirements.

Problem 4.

The following yield curves were developed for the Borjad reservoir in Hungary (Nagy et al.
2002). Assume that the supply reliability (also called vulnerability) is the percentage of the total
demand that is met in the worst case. What capacity and demand would provide 80% reliability
with 95% supply reliability?
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Figure 4.4. The efficiency function, K=f (M,P,), for the Borjad reservoir in Hungary
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reliability, P, for the Borjad reservoir in Hungary
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66 Chapter 3

The Gringorten equation is

N+0.12

T o044 (42D

where T is the average recurrence interval for a given deficit, N is the number of years in the
record and r is the rank of the deficit.

The reduced Gumbel variate (y) is related to the average recurrence interval (years) as
follows:

1
y :floge(—loge(l—;)) (3.50)

Values of y are calculated in Table 3.7 and are plotted against the deficit values in Figure 3.5
noting, however, that Pegram (pets. comm.) recommends excluding all deficits with
recurrence intervals less than 10 years.
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Figure 3.5: Relationship between reservoir deficit and Gumbel reduced variate for the
Richmond River at Casino for a constant draft of 70% using annual data

To calculate the average recurrence interval of the maximum deficit we could use the
equation associated with Figure 3.5, but this is not strictly correct given that the equation is
basad on least squares with the deficit as the dependent variable. The equivalent equation is

y = 0.0039 Deficit +0.79 (3.51)
For a deficit of 881 Mm®, from Equation (3.51) ¥ = 4.23 and from Equation (3.50), T = 69

years.
End Example 3.4

3.5.4 Reservoir planning by simulation — the Sequent Peak Algorithm

Simulation models are based on the mass balance equation and they perform computations
period by period under a given set of conditions. Mass balance formulation for the purpose of
simulation can be based cither on storage or deficits; the former is termed simulation (see
Section 3.5.8) and the latter is nothing more than the Sequent Peak Algorithm (SPA). While
the former is much more versatile and can readily accommodate storage dependent
phenomena such as water surface flux and seepage and can design for any reliability, it



Chapter 3 67

requires an operating policy for its implementation even for the simple case of single
reservoir systems. Except where a heuristic operating policy such as the standard operating
policy (see Section 2.3.9) is used, this is generally unavailable during planning.

Furthermore, as will be seen in Section 3.5.8 the implementation of storage-based simulation
(Behaviour analysis) even for a no-failure performance over the historical record is a trial and
error process. Where the design 1s to include failures, the trial and error nature of the
approach makes it very difficult to control the level of shortfall during the failure periods. In
other words, it is problematic to design simultancously for desired reliability and
vulnerability using the storage-based simulation approach, because any attempt to restrict
both the (volumetric) shortfall and duration of the deficits could easily become oscillatory
thus preventing a unique selution from being obtained. One possible outcome of this
inability to control simultaneously the duration and magnitude of deficits is the strange
swinging in the behaviour of the mean and median of storage reported in Pretto et al. (1997).
Such problems are not associated with the SPA (see Adeloye et al., 2000), which therefore
makes it procedurally much simpler. Nonetheless, because storage-based simulation is a
widely used technique, particularly for complex multiple reservoir systems, the technique
will be covered in greater detail in Section 3.5.8. The following sections consider the SPA in
its basic form and subsequent modifications.

Basic Sequent Peak Algorithm for single reservoirs

The basic SPA developed by Thomas & Burden (1963) is often termed the automated version
of the graphical Rippl (1883) technique because it can be implemented on a computer.
However, the formulation presented here is due to Lele (1987) and is much simpler to
implement on a computer than the original formulation of Thomas and Burden (see, for
example, McMahon and Mein, 1986).

In its basic form, the SPA technique estimates the active storage capacity for a failure-free
operation of an initially full reservoir over the historical record, i.e. for 100% reliability over
the N-year period.

Let K; be the cumulative sequential deficit at the beginning of period ¢ in a record of N
periods, K+ 1 be the corresponding deficit at the end of ¢, i.e. at the beginning of t+1, D;be the
demand in period ¢ and (; be the inflow during 7.

Then the SPA is implemented in the following steps:

Step 1. Set Ko = 0.0, i.e. assume that the initial deficit is zero, in other words that the
reservoir is initially full. (Note: This assumption is common with all critical period
techniques although it is not a problem with the SPA because if it 1s wrong, it will become
apparent during the solution of the problem.)

Step 2. For ¢=1,2...,N, calculate

Ky =max{0.0, (&, +0,~0)} (3.52)
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Step 3. If Ky = Ky, then go to step 4; else if this is the first iteration, then set Ko = Ky and go
to Step 2; else STOP: the SPA has failed because gross demand is higher than the average
inflow.

Step 4. Active reservoir capacity S = max(Ky+1) all over 2= 1,2,..N.

Example 3.5: Basic Sequent Peak Algorithm

We illustrate the basic SPA with a simple hypothetical example of a single reservoir whose
inflows over a 15-period interval are: 5,7, 8,4,3,3,2, 1,3, 6.8,9,3,4,and 9. The demand
per period is 4.5. Determine the required capacity to meet the given demand during the 15
periods.

oot ek ok ook ok o
The solution can be carried out in tabular form as presented in Table 3.8.

Table 3.8: Basic Sequent Peak Algorithm

! O Dy Kp1 = max {0.0, (KetDrQn)}
0 0

1 5 4.5 0.0

2 7 4.5 0.0

3 8 4.5 0.0

4 4 4.5 0.5

0 3 4.5 2.0

6 2} 4.5 35

7 2 4.5 6.0

8 1 4.5 9.5

9 3 4.5 11.0 = Capacity S

10 6 4.5 9.5

11 8 4.5 6.0
12 9 4.5 1.5
12 3 4.5 3.0

14 4 4.5 3.5

15=N 9 4.5 0.0 (Kyi1 = 0.0); hence no need
for repeating the data record

There are two important issues worthy of note in the above example. First is that at the end of
the record, the sequential deficit 15 zero, which means that the reservoir has returned to its full
state at the end of the record. Thus, although the SPA is normally formulated as a two-cycle
procedure, repeating another cycle of the data record when the deficit at the end of the first
cycle is zero is a waste of time because such an exercise will not produce a new sequence of
deficits or reservoir capacity. The second issuc is that while the SPA is a numerical
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alternative to the graphical mass curve (Rippl) diagram, it still suffers from some of the
limitations of the mass curve technique, namely:

1. the estimate of capacity is only based on the worst historic drought and says nothing
about the reliability of meeting the demand (although if future droughts are not as severe
as the design drought, then the implied reliability is 100%); and

2. the method is unable to accommodate storage-dependent fluxes (e.g. evaporation losses)
because the exposed reservoir surface area for estimating such fluxes depends on the
storage whereas the SPA is normally formulated in terms of the deficit.

Consequently, the basic SPA requires modifications if it is to be used as a comprehensive
technique for S-Y-P analysis. Furthermore, any such modification must also anticipate the
use of the technique for the planning of multiple reservoir systems. Modifications of the basic
SPA for single reservoir systems are discussed in Sections 3.5.5 and 3.5.7, while the
extension of the methodology to the planning of multiple reservoir systems is presented in

Chapter 4.
End Example 3.5

Example 3.6: Required storage capacity for a hypothetical reservoir on Hatchie River
using basie SPA

For the Hatchie River at Bolivar, compute the required reservoir capacily based on annual
streamflows to provide a yield equal to 75% of the mean annual flow using the basic SPA.

e e e e e e e e e Sk

Assume there are no net evaporation losses. The results of the application of the four steps in
Section 3.5.4 arc presented in Table 3.9 where K41 is the cumulative sequential deficit,
initially zero. The draft is 75% of mean annual streamflow (Table 1.1) (i.e. 0.75% 2178 =
1634 Mm3). From the analysis using annual flow data (Table A2.2) it is noted that the critical
period begins in 1939 and ends in 1943 requiring a storage capacity of 1975 Mm?3 to provide
75% draft during the 55-year period without failure occurring.

Table 3.9: Basic SPA applied to annual streamflows for Hatchie River

Year Annual inflow (Mm3) | K1 (Mm3) Comment
1930 1667.42 0.00

1931 1716.83 0.00

1932 3713.57 0.00

1933 2872.74 0.00

1934 1327.16 306.64

1935 2320.74 0.00

1936 1561.86 71.94

1937 1791.14 0.00

1938 1689.53 0.00

1939 2500.76 0.00 Start of critical period
1940 1280.66 353.14

1941 - 865.87 1121.07
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1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984

1248.46
1164.85
2185.73
2994.03
290291
1914 .47
3241.88
2690.47
3584.27
3055.72
1801.15
2529.60
1179.53
1683.51
1669.20
3054.82
1750.60
1534.65
1488.07
2155.14
2111.56
1147.49
1792.11
1508.72
1077.88
1790.76
1976.70
1878.53
2079.43
1658.51
243321
303323
3233.50
3145.89
1758.35
242992
2323.80
4136.38
2432.24
1280.30
2743.20
3384.18
2418.81

1506.41
1975.36
1423.43
63.20
0.00
0.00
0.00
0.00
(.00
0.00
0.00
0.00
454.27
404.56
369.16
0.00
0.00
99.15
244.88
0.00
0.00
486.31
328.00
453.08
1009.00
852.04
509.14
264.41
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
353.50
0.00
0.00
0.00

End of critical period

K1 18 zero, i.e. full reservoir at
end of V.

Maximum Ky is capacity and
is equal to 1975.36

End Example 3.6




