
Diagnostics Output Window Performance Fixes for RiverWare 6.5 / Gnats 5405 Page 1 of 7

Diagnostics Output Window Performance Fixes for RiverWare 6.5
Gnats 5405: Diagnostics sometimes cause the RiverWare interface to freeze.
Phil Weinstein / CADSWES / May 2014 (edit 5-27-2014).

1. Overview
2. Scenario 1: Diagnostics Output Window CLOSED
3. Scenario 2: Diagnostics Output Windows OPEN
4. Additional Optimization: QString sharing for duplicated Context and Message strings.
5. Message Filter moved from "View" to "Model"
6. Appendix: Diagnostics Output Window Object Diagram

Overview

The Gnats 5405 bug model helped us identify and address two related performance problems with the
Diagnostics Output Window handling a very large number of messages (e.g. > 100,000). With this model, a
35 second run takes over an hour to complete when informational diagnostics are enabled. In one case, the
GUI is frozen for most of that time.

The bug model is rulebased, with 14616 hourly timesteps. 350,000+ diagnostic messages are generated.
Most of those messages are generated within the first timestep -- without any intervening Qt event
dispatching.

The bug report describes these two scenarios:

1. Diagnostics Output Window CLOSED: frozen GUI for virtually the entire approx. hour-long run.
2. Diagnostics Output Window OPEN: responsive GUI, but also profound slowness, about an hour.

With Informational Diagnostics disabled in this bug model, the run completes in about 35 seconds in both
cases.1

1 This is with a debug build of RiverWare 6.5 development on my 64-bit Dell Optiplex 990 Windows 7 development machine
(Intel Core i7-2600 CPU, 3.40 GHz; 16 GB) in Visual Studio 2010.

Diagnostics Output Window Performance Fixes for RiverWare 6.5 / Gnats 5405 Page 2 of 7

The two message lists ("context" and "message") are implemented with Qt4 model/view classes --
QTreeViews (two instances) and a QAbstractTableModel (non-tree). Performance analysis shows that, given
the very large number of generated messages (over 350,000), about 90% of the time is due to geometry
computations in QTreeView. The view widget's append-row processing doesn't perform well with a large
number of rows already in the model. Additionally a timer-based mechanism within the QTreeView intended
to mitigate performance limitations gets bogged down by the huge number of unprocessed events within the
first timestep, and this locks up the GUI for most of the hour-long run. (This is described in the next section).

Scenario 1: Diagnostics Output Window CLOSED

An "optimization" within the QAbstractItemView base class to defer processing when the view is not visible
(in a hidden dialog) is ending up taking virtually all of the time repeatedly canceling and rescheduling a
timer. This happens each time a notification from the QAbstractItemModel, to the QTreeViews, of rows
being added. (The Qt excerpts below are from Qt 4.8.5).

void QAbstractItemView::rowsInserted(const QModelIndex &, int, int)
{
 if (!isVisible())
 d_func()->fetchMoreTimer.start(0, this); //fetch more later
 else
 updateEditorGeometries();
}

The low-level culprit is a method involved in canceling a particular timer (before rescheduling) -- see below.
The items in the thread's "postEventList" is steadily growing. After about a minute (all within the model's
first timestep), the list has over 150,000 events (from which Qt is trying to remove any time-out event
generated from the particular QTimer). Events are piling up faster than they can be processed or removed --
so basically, we don't get to any of the "user input" (e.g. mouse) events until the end of the run. The GUI is
frozen until then.

Void QCoreApplicationPrivate::removePostedTimerEvent(QObject *object, int timerId)
{
 QThreadData *data = object->d_func()->threadData;

 QMutexLocker locker(&data->postEventList.mutex);
 if (data->postEventList.size() == 0)
 return;
 for (int i = 0; i < data->postEventList.size(); ++i) {
 const QPostEvent & pe = data->postEventList.at(i);
 if (pe.receiver == object
 && pe.event
 && (pe.event->type() == QEvent::Timer || pe.event->type() == QEvent::ZeroTimerEvent)
 && static_cast(pe.event)->timerId() == timerId) {
 --pe.receiver->d_func()->postedEvents;
 pe.event->posted = false;
 delete pe.event;
 const_cast(PE).event = 0;
 return;
 }
 }
}

Diagnostics Output Window Performance Fixes for RiverWare 6.5 / Gnats 5405 Page 3 of 7

Both the contribution to this event processing backlog and the impact on GUI responsiveness were mitigated
by the append-message performance enhancement described in the subsequent section. However, something
related to the mechanism highlighted above does still put the program into the very-slow-execution state
when:

1. There are already a lot of diagnostic messages in the list, and
2. The first timestep of the model is run with the Diagnostic Output Window closed (engaging the code

above), and
3. The Diagnostic Output Window is subsequently opened.

Fortunately, now, (a) closing the Diagnostic Output Window or (b) clearing
the diagnostic messages or (c) disabling the generation of "Informational
Diagnostics" -- all of which can be done during a run -- restore the program
to a reasonable execution speed.

It was found that minimizing the Diagnostics Output Window does not have
the profound performance benefit of closing the window -- in particular,
when RiverWare has gotten into the very-slow-execution state. (No
information is lost by closing the window). For this reason, the Diagnostic
Output Window's "minimize" button and Window menu item have been
disabled; see the accompanying screenshots. When closing the window, the
DiagOutputWidget (containing the two QTreeViews) remains instantiated,
but is no longer parented by a dialog widget.

Diagnostics Output Window Performance Fixes for RiverWare 6.5 / Gnats 5405 Page 4 of 7

Scenario 2: Diagnostics Output Windows OPEN

The prior implementation (e.g. in RiverWare 6.4) added new messages to the model one at a time.
QTreeView uses a "delayedLayout" timer ostensibly to condense a sequence of layout requests into a single
operation. But it's not doing the trick. Each gets individually processed, and this gets crazily expensive for a
huge list. Performance progressively slows. Nothing particularly stands out -- it's just that QTreeView's basic
QModelIndex machinery doesn't scale well.

Virtually all of the time is spent in QTreeView::doItemsLayout() called for the "delayedLayout" timer. We
get down to a low level where time is distributed between basic Qt item model/view functions -- components
of a total of 87% of the entire execution time, just for that method ...

 25% -- QTreeViewPrivate::layout() function body
 22% -- QModelIndex QAbstractTableModel::index (int row, int col, const QModelIndex &parent)
 9% -- bool QTreeViewPrivate::hasVisibleChildren (const QModelIndex& parent) const
 7% -- void QVector<T>::resize (int asize)
 6% -- inline bool isRowHidden (const QModelIndex&) const
 5% -- QTreeViewPrivate::isIndexExpanded (const QModelIndex&) const
 3% -- QModelIndex destructor
 10% -- other

Basically, the architecture based around QModelIndex is generalized (way overly, I would say) to support all
sorts of data topologies. It's unfortunate that a flat list has to go through all of that. Notice that 25% of the
whole layout process is dedicated to the construction and destruction of QModelIndex objects ... just for
conveying row numbers. QTreeView's row visibility state (this is in the view, not the model) is designed for
sparsely hidden rows -- also not efficient for typical "filtering" use cases. Overall, very little of the execution
profile is relevant for the diagnostic output message display lists. At some point, we will probably want to
bail from use of this general Qt item model/view list (flat tree view) for these display lists.

The basic solution to most performance problem scenarios was to deploy our own timer to condense multiple
(typically 100 to 1000 messages using this bug model in my debug environment) into a single append-
multiple-rows operation. However, the internal architecture overhead still causes the QTreeView to get
bogged down in some scenarios (apparently caused by allowing so many unprocessed events to accumulate
in the first timestep, with the bug model, see the prior section). A workaround is to close the Diagnostic
Output Window (which now works effectively) -- no information is lost by doing this. The slow execution
state can also be fixed by clearing all diagnostics messages or turning off informational diagnostics -- both of
which can be done while the model is running.

Message records are no longer immediately added to the DiagMsgDataModel (a QAbstractTableModel
implementation). They are queued up and periodically added to the model in batches using a QTimer. See
especially the following data structure and these methods. (See the relevant object diagram later in this
document).

Diagnostics Output Window Performance Fixes for RiverWare 6.5 / Gnats 5405 Page 5 of 7

// Queued Message Records
QList<DiagMsgDataModel::Rec> DiagOutputWidget::_queuedMessageRecs;

void DiagOutputWidget::appendMsg (cwDiagData* diagData);
void DiagOutputWidget::schedMessageDelay (int msec);
void DiagOutputWidget::releaseQueuedMessages();

void DiagMsgDataModel::appendRecords (
 const QList<Rec>& msgRecs, // Messages to be added
 const QWidget* refWid, // Reference Wid for font measurements
 int& shownRowCnt, // Ret: number of new shown rows
 QList<int>& hiddenRowList, // Ret: new hidden rows
 QSet<cwDiagLevel>& levelSet); // Ret: messages' levels

Additional Optimization: QString sharing for duplicated Context
and Message strings.

Since QStrings use "implicit sharing" (with "copy-on-write"), and since the "context" or "message" part of
many diagnostics messages are often duplicates of those parts in prior messages, significant memory savings
can be achieved by insuring that, to a large extent, identical strings in these two lists are explicitly copied
from prior instances. This reduces the amount of dynamic memory allocated for the generated diagnostics
messages stored in the model class.

A simple cache algorithm was introduced which maintains two static arrays of QStrings indexed by the
number of characters in the string. Each element contains the last "context" or "message" string encountered
of the respective character length. The cache is applied to new diagnostics messages as they are generated.

enum { CtxCacheCharLimit = 250 };
enum { MsgCacheCharLimit = 750 };
static QString _ctxStringCache [CtxCacheCharLimit];
static QString _msgStringCache [MsgCacheCharLimit];

When a match is encountered, the cache's copy is assigned to the new message's row record
(DiagMsgDataModel::Rec). This isn't a perfect cache algorithm (not all potential duplicates are "shared"),
but it is very efficient and highly effective. In the test model (in the course of processing 350,700 diagnostic
messages), the following savings are realized:

 Context Strings: 321,411 cache hits 92% savings

 Message Strings: 204,604 cache hits 58% savings

See the DiagMsgDataModel::Rec::applyStringCache() method, called from the Rec
(DiagMsgDataModel::Rec) constructor.

Diagnostics Output Window Performance Fixes for RiverWare 6.5 / Gnats 5405 Page 6 of 7

Message Filter moved from "View" to "Model"

The Diagnostics Output Window supports a Filtering function applied to diagnostics messages which have
already been generated. This is distinct from the message-generation "filtering" controlled from the
Diagnostics Configuration Dialogs. Messages which are filtered out in the Diagnostics Output Window are
not removed -- they are only temporarily hidden, so can be shown again by clearing or changing the filter
specification.

The "Model" (DiagMsgDataModel) is a more appropriate place for the filter specification (data) and
algorithms for a bunch of reasons. It was done in the course of this bug fix because we were thinking of
completely deleting the DiagOutputWidget (and its two QTreeViews) when the Diagnostics Output Window
(or the analogous panel in the SCT) are not visible. It turned out that closing the containing window had the
desirable effect. (The DiagOutputWidget is removed from all instantiated widget parents). So it was not
necessary to actually delete the DiagOutputWidget when the diagnostics messages are not shown.

A future possible enhancement (for which this change would be helpful) is a re-implementation of
diagnostics message filtering. Currently filtered-out message rows are hidden by hiding those rows within
the QTreeView. This is quite inefficient when a large number of rows are hidden. Filtering changes take a lot
of time because changing the hide-state of a row is very inefficient in a huge list where a lot of rows are
currently hidden. A more efficient implementation would be having the visible model (DiagMsgDataModel)
provide only the non-filtered rows when filtering is active.

Diagnostics Output Window Performance Fixes for RiverWare 6.5 / Gnats 5405 Page 7 of 7

Appendix: Diagnostics Output Window Object Diagram

This object diagram for RiverWare 6.4 is also correct for RiverWare 6.5. We had considered moving the
DiagMsgDataModel from the DiagOutputWidget to the DiagOutputManager (all singletons) so that the
DiagOutputWidget and its two QTreeViews could be deleted when the diagnostics message display is not
shown. But that turned out to be unnecessary. Closing (and deleting) the DiagOutputWidget's parent dialog
(while keeping the DiagOutputWidget instantated, stored in the manager class) was sufficient for preventing
the worst part of the Gnats 5405 performance problems.

--- (end) ---

