
RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 1 of 26

 April 11, 2014

RiverWare: Improved Access to RPL Documentation /
 Analysis and Design

Phil Weinstein, Patrick Lynn, David Neumann, CADSWES, 4-11-2014

This document proposes enhancements to RiverWare (beyond version 6.4) to display online help
content within RiverWare for RPL Predefined Functions and RPL Operators.

Contents:

1. Background
a. Task Description
b. RiverWare Documentation Overview
c. Help Content: RPL Predefined Functions
d. Help Content: RPL Operators
e. Possible Future Document Architecture

2. Requirements Analysis
a. Feature Scope: What Help Topics? Where Shown?
b. Help Content Architecture
c. Support for Formal Argument Names

3. Design
a. Level 1: Access to existing RPL documentation
b. Level 2: Improvements to RPL documentation

4. RPL Document Processing
5. Development Tasks
6. Development Estimate
7. Appendices

a. RPL Documentation Topics
b. Sample Function HTML and CSS help files

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 2 of 26

 April 11, 2014

(1) Background

(1a) Task Description

This analysis and design document addresses this task:

Design and estimate improved access to RPL documentation.

CADSWES staff will design and estimate mechanisms for more convenient access to
RPL documentation. For example, the Predefined Functions tab of the RPL palette should
provide access to function documentation that is comparable to that contained in on-line
help. This includes a description of the purpose of the function as well as meaningful
names and descriptions for the function parameters. Similarly, the Predefined Function
editor should provide convenient access to the same information. RPL editor dialogs
should provide context-sensitive access to on-line help based on the current selection.

(1b) RiverWare Documentation Overview

RiverWare documentation is currently authored with Adobe FrameMaker 10. It consists of about
30 related documents with hyperlinks to specific sections across documents. A one-page "menu"
(table of contents) document is also provided. This documentation is available from these places
as PDF files:

1. Online, on the RiverWare website at:
http://www.RiverWare.org/PDF/RiverWare/documentation/

2. From the RiverWare program, stored locally with the RiverWare installation, accessible
from the RiverWare workspace's "Help" menu. This brings up the user's currently
configured PDF reader, typically Adobe Reader.

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 3 of 26

 April 11, 2014

An important feature of FrameMaker used in RiverWare documentation is the ability to compose
mathematical expressions, displayed with vectored graphics in the generated PDFs.

The process of generating the PDFs includes use of an external tool to implement hyperlinks
between PDF documents.

Appendix A presents an outline of the types of information in the RPL components of
RiverWare documentation. This represents six (6) of the thirty (30) individual RiverWare
documents (including "Rulebased Simulation").

(1c) Help Content: RPL Predefined Functions

RPL Predefined Function documentation is provided in a single FrameMaker-sourced document.
For RiverWare 6.4, it contains 214 functions in 191 function sections.

 RPL Predefined Functions
http://www.RiverWare.org/PDF/RiverWare/documentation/RPLPredefinedFunctions.pdf

The RPL Predefined Functions are generally presented in alphabetical order. Some small groups
of related functions are presented together as a single item (function section). There are 22
function sections which describe two functions, and one function section which describes three
functions. Most of the content of function help content is laid out in a table. See the example
below.

Many of the function sections have graphically implemented mathematical formulas, usually just
one formula, but some function sections have multiple. Overall, there are 77 mathematical
formulas images. Two function sections have associated workspace screenshot details.

In PDF, mathematical formulas look very good, e.g. when zooming in. They are generated as
vectored graphics in PDF files. However when generating HTML, only raster graphics files are
generated (i.e. GIF or PNG or JPEG). The scaled vector graphics (SVG) format would be
preferable, as that is currently supported in all modern browsers (including in Qt WebKit used in
RiverWare).

A two-page section, “Hypothetical Simulation Overview” appears just before the relevant
hypothetical simulation functions. (For the purpose of supporting dynamic handling of RPL
Predefined Function help content, it may be helpful to move this descriptive section to a different
place within RiverWare documentation).

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 4 of 26

 April 11, 2014

This presentation has the following issues:

1. Not all function sections have an introductory sentence above the table (as depicted
above). Where present, that text is redundant with the “Description” row in the display
table. We would like to either remove that introductory sentence or merge it with the
“Description” text.

2. The descriptions for each of the arguments are either one-or-two words, or full sentences.
We would like to have something usable as a formal argument (parameter) name distinct
from a longer description. Having formal argument names available for function
arguments would allow us to use those names within RiverWare in place of the generic
“arg0”, “arg1”, “arg2”, … parameter names.

3. In documentation, RPL Predefined Function arguments are numbered starting at one (1).
But in the user interface, e.g. where generic numbered arguments are referred to, they
start at zero, i.e. “arg0”, “arg1”, “arg2”,…. We will want to reconcile this.

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 5 of 26

 April 11, 2014

(1d) Help Content: RPL Operators

RPL operators are represented by most of the sixty (60) buttons on the first tab of the RPL
Palette. (See RPL Palette images in the next section). They are described (as buttons) in the
"Palette" portion of this online help document:

 RPL Data Types and Palette
http://www.RiverWare.org/PDF/RiverWare/documentation/RPLTypesPalette.pdf

The “RPL Palette” section contains the following eight subsections, each with a table of related
items, one row per expression type:

1. Mathematical Operation Buttons
2. Logical Operation Buttons
3. Object and Slot Lookup and Assignment Buttons
4. Unary Operation Buttons
5. Buttons for Setting Flags on Slots
6. Conditional and Iterative Operation Buttons
7. List Operation Buttons
8. Miscellaneous Buttons

The Mathematical Operation Buttons section is shown below. That section consists of only the
table of operations. Some sections have additional paragraphs of text.

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 6 of 26

 April 11, 2014

As a fundamental quality of the use of RPL Palette buttons, each corresponds to a class of
selectable sub-expressions within a RPL block or expression shown in a RPL Frame. Clicking on
a button replaces the selected sub-expression with a new operator expression.

 (1e) Possible Future Document Architecture

In the future we may want to consider a more sophisticated structure and process for all
RiverWare documentation which would support:

1. Hard-copy printing of whole chapters or books.
2. External viewer/browser.
3. RiverWare GUI / panels within existing application dialogs or separate windows.

Some of the qualities we will want from a modernized RiverWare documentation system are:

1. Single-source for all media: Print, External viewer (browser), RiverWare GUI panels and
windows.

2. Variable width presentations with wrapped text. It should be possible to reasonably view
documentation content within a narrow window or "panel". It should also look good in a
printed page format.

3. Flexible granularity. It should be possible to present individual sections of the RiverWare
documentation, e.g. down to the level of individual RPL Predefined Function Arguments.
Also, references to relevant sections should be accessible programmatically from the
RiverWare program.

Existing qualities and capabilities of our current document infrastructure which will continue to
be important include:

4. Support for hyperlinks, contents and index generation.
5. Support for easy authoring of mathematical formulas and inclusion of externally

generated images. (Ideally, when generating HTML/XML output, formula images should
be generated using high-quality SVG vectored graphics files, rather than GIF or PNG or
JPEG raster graphics).

We may want to eventually use a content management / publishing tool supporting the DITA
("Darwin Information Typing Architecture") standard, such as FrameMaker’s XML author mode
or structured mode. With this sort of system, we would probably choose to convey help content
to RiverWare in XML files, and use XSLT to generate HTML inside RiverWare.

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 7 of 26

 April 11, 2014

(2) Requirements Analysis

(2a) Feature Scope: What Help Topics? Where Shown?

This proposal focuses on two of the "enumerated item" topics among the various RPL
documentation topics listed in Appendix A.

1. RPL Predefined Functions (214 functions in 191 function sections).
2. RPL Operators / Buttons in the RPL Palette (60, in 8 categories).

This proposal addresses adding help support for only: (a) RPL Predefined Functions, and (b)
RPL Operators. Not addressed is help support for RPL Statements. Note that some of the
Conditional and Iterative Operators look like certain RPL Statements (e.g. the IF … ELSE, and
FOR …) – but they are not related.

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 8 of 26

 April 11, 2014

The places within the RiverWare RPL GUI in which online help for these topics is relevant are:

1. RPL Palette / Palette Buttons Tab (for expression type help).
2. RPL Palette / Predefined Functions Tab (for "functions" help).
3. RPL Frame (editor panels) in which a predefined functions and operator expressions are

used.

The following sections
enumerate four ways in which
help content could be
displayed with respect to the
item for which help
documentation is requested
by the user.

The image to the right
illustrates one of proposed
methods for showing help:

Help about a particular RPL
Predefined Function used
with a Rule (or user-defined
function or RPL expression
slot) could be presented by
showing that Predefined
Function’s “editor” dialog,
which would include that
Predefined Function’s help
content.

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 9 of 26

 April 11, 2014

(1) Help can be shown within the dialog in which context-help was requested: There are
several types of dialogs in which RPL Frames (editor panels) are used (this being one of the
types of places from which context help would be requested). Each of these contexts, plus the
two relevant RPL Palette tabs (see above) have their own GUI layout constraints, and would
require different and separately implemented changes to add a "help" panel. We're deciding that
this lack of conformity and broad development scope is undesirable. One exception to this is
that we will show the RPL Predefined Function’s description content in a panel at the bottom of
the Predefined Function tab of the RPL palette.

(2) Help can be shown within the dialog corresponding to the item for which context-help is
being requested: Of the items having help topics supported by this enhancement, only RPL
Predefined Functions have an associated dialog. And, in fact, the RPL Frame panel (intended for
user-defined functions) doesn't currently have a use when showing a predefined function. The
panel just shows this message: "See Online Help for documentation of predefined functions."
This is a natural place to show documentation for the predefined function.

(3) Help can be shown within a single reusable (singleton) online help viewer window
within RiverWare: Since individual RPL operators don't have their own dialog, this is a
reasonable place in which to show help topics for those RPL language constructs.

(4) Help can be shown within an external viewer/browser. This is what's currently being done
for online help, to show PDFs in a PDF viewer, typically Adobe Reader. There are ways of
having certain versions of certain viewers navigate to specific places within an external
document. How this is done can be dependent on which PDF viewer program the user has
installed and configured1. It is not generally a reliable approach for implementing primary help
functions.

If an HTML version of any of the PDF documents were made available, it would be possible to
reliably navigate to a particular section within that document – assuming the “anchor” (or “id”
element attribute text value) for the desired section is known. Unfortunately, depending on the
default browser on the user’s system, a new instance of the browser -- or a new tab within an
active instance -- may be created each time RiverWare attempts to show a section of the
documentation.

1 Our decision to use Qt 4’s general QDesktopServices library for showing external
documents certainly has benefits. But for viewing PDF files, that approach doesn’t allow
us to pass a “named destination” command line parameter to the Adobe Reader program,
nor even specify the viewer application to be used.

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 10 of 26

 April 11, 2014

(2b) Help Content Architecture

Given the set of requirements of a future, modernized documentation architecture (described
above), it's a forgone conclusion that RiverWare documentation will need to support HTML as a
display format2 in addition to PDF. This is not to say that HTML should be the source format.
We will want to manage our content with high level tools supporting associated meta-data (so
that specific content can be accessed programmatically) and integrated advanced authoring
capabilities (such as for mathematical formula display).

With respect to the current task of enhancing RiverWare to display certain RiverWare RPL
documentation within the GUI, an intermediate step is doing so with the HTML format --
regardless of how that HTML content is generated. In this way, any use of that HTML content
by the RiverWare program will not have to be changed very much when a new documentation
architecture is devised.3,4

The scope of this particular development is limited to providing access to the most needed parts
of the RPL documentation using our current document authoring procedures and tools (using
Adobe FrameMaker), possibly accommodated with changes to the documentation source, an
upgrade to a newer version of FrameMaker (upgrading from version 10 to 12), and post-
processing of generated HTML files.

2 Technically, conveying documentation content to the RiverWare program with XML
and associated XSLT files for generating HTML would be the preferred approach
(assuming that the XML actually has semantic structure rather than just being an XML
representation of display-oriented content). This is effectively equivalent to providing
HTML for display, but also with the advantage of providing well-defined and easily
usable meta-data.

3 RiverWare's recently developed model report capabilities demonstrate displaying
HTML content with CSS and JavaScript. This makes use of Qt WebKit in Qt 4.8 which
continues to be in active development in Qt 5. Qt WebKit does support transforming
XML documents to HTML via XSLT. It also supports SVG (scaled vector graphics)
image file rendering. RiverWare is currently using Qt 4.8.5. We anticipate upgrading to
Qt 5.3 or beyond within the next year or two.

4 We did take a look at some possible technologies to display PDF (existing RiverWare
documentation) with Qt in RiverWare. That would require integration of new special 3rd-
party libraries (e.g. Poppler, or the Adobe PDF Library SDK). But the fact that PDF
content is presented with a fixed-width limits the value of this approach, given that, in
some contexts, we would want to display documentation content in narrower panels.

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 11 of 26

 April 11, 2014

(2c) Support for Formal Argument Names

In the RiverWare user interface, RPL Predefined Function arguments (parameters) are often
designated with a value type (e.g. NUMERIC) and a numbered argument name, i.e. “arg0”,
“arg1”, “arg2”, etc. It would be desirable to:

1. Assign meaningful names (formal argument names) to each of the arguments in all of the
RPL Predefined Function.

2. Use those formal argument names in place of the arbitrary numbered argument names
wherever they appear in the RiverWare GUI and RPL diagnostic messages.

Some thought should go into naming conventions for formal argument names among the existing
214 RPL Predefined Functions. We need to consider the uses of these names in the RiverWare
user interface, e.g. with regard to how terse these argument names should be. Note that it may be
inconvenient to change these names in the future.

Formal argument names could start with upper case or lower case letters (but they should be
consistent in this regard; we need to decide which we will use). Spaces will be allowed in these
names.

See the subsequent section, “Design Level 2: Improvements to RPL documentation,” for further
discussion of this feature.

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 12 of 26

 April 11, 2014

(3) Design

There would be quite a bit of value in providing access from RiverWare to the RPL Predefined
Function and RPL Operator (Palette Button) documentation in basically its current form – that is,
without significant content revision.

In particular, the feature of presenting well-formulated formal argument names for RPL
Predefined functions is significantly independent from importing RPL documentation content
into RiverWare, or otherwise providing access to that documentation from RiverWare.

Designs to support two levels of functionality are proposed separately in these two sections:

 (3a) Design Level 1: Access to existing RPL documentation
 (3b) Design Level 2: Improvements to RPL documentation

(3a) Design Level 1: Access to existing RPL documentation

The following RPL online help topics can be displayed by RiverWare:

1. RPL Predefined Functions (214 functions in 191 function sections).
2. RPL Operators / Buttons in the RPL Palette (60, in 8 categories).

Content for these two types of information are provided to RiverWare via two HTML files
having some semantic structure and markup, plus about 80 image files.

The RPL Predefined Functions HTML document has an overall “div” element for each RPL
Function. Those function elements contain other elements having attributes to distinguish a
function’s description, return data type, “evaluation” description, mathematical expression,
additional comments, and for each argument: the argument data type, and “meaning” description.

The two HTML files and associated image files are incorporated into RiverWare using Qt's
resource system (i.e., included in the build tree, referenced by a .qrc file, compiled using rcc as
part of the build process). The overall publishing process is described in a latter section.

RPL Predefined Function help content is displayed in the "editor" dialog for the function -- in
place of the formerly empty panel which used to display only the message, "See Online Help for
documentation of predefined functions." (The following image is a pre-development mockup).

Additionally, the “description” sentences for RPL Predefined Functions are displayed on the
RPL Palette’s Predefined Functions tab in an optionally shown “Description” panel below the
function list (similar to that panel on the User Defined Functions tab).

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 13 of 26

 April 11, 2014

Note [TENTATIVE]: The Predefined Function Editor’s “Arguments” and “Return Type”
display widget line is now technically redundant with that information in the displayed help
content. But that is still shown so that there is a consistent place within the dialog where these
values are shown. Note that, within the displayed help content, those details may be scrolled out
of view. We might, however, choose to move the Return Type field (see above) to the left side.

RPL Expression Type help content is displayed in a single separate RiverWare Help window
(a singleton) -- not illustrated here. A "history" combo-box allows the user to revisit help topics
recently shown in this dialog. This window will show the entire HTML version of the RPL Data
Types and Palette document, scrolled to the section containing the relevant expression type.

Alternative: Instead of displaying RPL Expression Type help content in a new
RiverWare Help window, we could show an HTML version of the RPL Data Types and
Palette document, scrolled to the section (one of eight) describing the item, in a web
browser. Since an HTML URL can include an anchor name (or element ID attribute
value), this can be done reliably. However, depending on the user’s default web browser,
a new browser window or a new tab in the browser may be created each time RiverWare
shows this help content.

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 14 of 26

 April 11, 2014

Content for these two different types of dialogs is provided to RiverWare as HTML and may
contain references to image files of a format typically supported in webpages (PNG, GIF, JPG,
SVG). To the extent possible, text wraps to the available visible horizontal space, though the
presence of an image (e.g. the mathematical expression shown above) may constrain the
minimum content width. In that case, a horizontal scrollbar is displayed when the panel is
narrow.

The help content includes hyperlinks to particular "named destinations" within the 30 (or so)
RiverWare help PDF documents. In the current level of documentation support, hyperlinks in
help text displayed in RiverWare are treated as follows:

 Links to RPL Predefined Functions are supported by showing the Predefined Function
Editor for the linked function.

 Links to sections in the RPL Data Types and Palette document are supported by showing
that document in the new RiverWare Help window, scrolled to the designated section.

 All other links are removed. Note: we will need to change the presentation of links
within the two relevant FrameMaker documents to use the word “See …” following by a
link on the name of the linked section having the actual link markup, rather than having
the link on words like “CLICK HERE”. In this way, semantics will be preserved when
just removing the unsupported link (anchor) tag.

A RPL Predefined Function "edit" dialog (presenting help content) can be shown from these
places within RiverWare, as indicated:

1. From a RPL Frame (editor):
 Double-clicking on the call to a RPL Predefined Function.
 Clicking on a new question-mark-circle icon button (on the right side of a line

above the RPL Frame), which shows help on the selected expression. This button
is enabled only when help for that expression is available.

2. From the RPL Palette's "Predefined Functions" tab (supporting single-item selection in a
list or tree of the available predefined functions):

 Function >> "Show Help..." menu operation.
 "Show Help..." context-menu (right-click) operation
 Question-mark-circle icon button, to the right of the "Set Name" row.

The new RiverWare Help dialog (initially used only for showing help for a RPL Expression
Type) can be shown from these places within RiverWare, as indicated:

 From a RPL Frame (editor):
o Clicking on a new question-mark-circle icon button (on the right side of a line

above the RPL Frame), which shows help on the selected expression. This button
is enabled only when help for that expression is available.

 From the RPL Palette's "Palette Buttons" tab, Right-Clicking OR Shift-Left-Clicking on a
button. The tooltip on those buttons show this message on the 2nd line: "Shift-Click to
show help".

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 15 of 26

 April 11, 2014

Note that, in all three tabs of the RPL Palette, double clicking an enabled item (or just single
clicking on a palette button) causes the selected sub-expression in the current RPL Frame to be
replaced with the palette item's content! So obviously those events can't be used for showing
help content5.

The help content is "logically" provided to RiverWare as individual HTML and image files. But
instead of distributing these many files with RiverWare, they are embedded within the
RiverWare executable using Qt Resources. (Qt Resources have previously been used in
RiverWare for binding icon image files). RiverWare needs to associate the embedded help topic
"documents" with the corresponding entities within RiverWare (i.e. RPL Predefined Functions,
and such). This is done through file and Qt Resource naming conventions.

(3b) Design Level 2: Improvements to RPL documentation

Although modifications of the two relevant FrameMaker source documents will be required for
technical reasons to implement the design described above, the task of supporting new formal
argument (parameter) names for RPL Predefined Functions is a significant isolatable task which
could reasonably be addressed as a separate enhancement.

There is also the idea that we want to either remove, or combine with the “description” cell, the
leading sentence which appears above the main display table in most RPL Predefined Functions’
help content. That change is not technically required, and can readily be handled as a separate
task involving only edits to the FrameMaker source. (Note however that we will not attempt to
mark those leading sentences with semantic tags for use by RiverWare, since this content change
is likely to be done at some point).

5 The new "help" functionality may exacerbate a usability problem -- it may be too easy
to unintentionally change a RPL block or user-defined function. We might want to
consider adding a RPL Edit Lock which disables changes to any RPL code within
RiverWare.

Another provision we might consider to alert the user that the primary actions of the RPL
Palette have an edit effect in another dialog would be the following. We could add a line
to the top of the RPL Palette dialog (visible when any of the three tabs are selected)
indicating the entity (Rule, User-Defined RPL Function, or RPL Expression Slot) which
is currently being edited. Also the corresponding RPL Object or Slot icon could be
presented as a small button which raises that active editor dialog. For example:
EDITING: [F] Function: DeltaTimeToMarch

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 16 of 26

 April 11, 2014

The “Arguments” rows in a RPL Predefined Function documentation table, in the legacy
implementation, contain these columns:

 Column 1: Argument Number (integer, 1 or greater).
 Column 2: Argument Type (e.g. OBJECT or NUMERIC)
 Column 3: Meaning – sometimes one or two words, and often one or more sentences.

Three options can be considered for adding a formal argument name.

Option 1: The first column could include both the argument number and the argument name,
separated with a colon, for example:

 2: poolElevation

Option 2: The formal argument name could be placed at the beginning of the Meaning column,
followed by a colon, for example:

 col: column index of the table slot (0-based).

Option 3: This new column could be added for a formal argument name. There would be four
columns:

 Column 1: Argument Number (integer, 1 or greater).
 Column 2: Argument Name, one word, possibly camel cased, e.g. “poolElevation”.
 Column 3: Argument Type (e.g. OBJECT or NUMERIC)
 Column 4: Meaning – sometimes one or two words, and often one or more sentences.

Not adding a fourth column (i.e. not choosing Option 3) would have the benefit of the content
displaying better in a window or panel having limited width.

The places in the RiverWare GUI where formal argument names would be used in place of the
numbered argument names (e.g. “arg0”) include:

1. RPL Predefined Function editor dialog, in the Arguments field (unless we decide to
eliminate that because it is technically redundant with the displayed help text).

2. RPL Palette’s Predefined Functions tab, in the Arguments column of the function list.
3. Possibly as a tooltip on an actual parameter in a RPL frame, i.e. in the context of the use

of a RPL Predefined Function. This could potentially be supported whether or not the
formal parameter was specified, e.g. even if the parameter is shown as “<object expr>”.

4. In diagnostics where particular RPL Predefined Function arguments are cited.

On RiverWare startup, RPL Predefined Function formal argument names would be read from the
help data and effectively placed on PredefinedFunction objects.

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 17 of 26

 April 11, 2014

(4) RPL Document Processing

It is important to maintain only a single copy of RiverWare Online Help document source files.
We need a way of getting the help content from our FrameMaker-sourced documents into
RiverWare.

The largest part of the development process will be the creation of a publishing process and tools
(a post-processing script) used in generating the required data from FrameMaker. The end-
product of that publishing process consists of a set of files which are bound to the RiverWare
executable. The format design of those files is effectively an interface from which both "sides"
can be independently developed:

1. Generation of help content and supporting data from FrameMaker help document source.
2. RiverWare enhancements to support that help content.

RiverWare help for RPL will be based on two HTML files, one for predefined functions and one
for Operators, with additional image files (approximately 80). These files will be incorporated
into RiverWare using Qt's resource system (i.e., included in the build tree, referenced by a .qrc
file, compiled using rcc as part of the build process).

These HTML files:

 Need to be created from the Framemaker source document so that we are not maintaining
documentation in two places.

 Need to contain non-displaying content (semantic mark-up) that indicate which part of
the content is relevant to which function or statement/operator.

o Each RPL expression type needs a well-known anchor for the corresponding
document section, discernible by RiverWare.

o All the content for a particular RPL Predefined Function should be contained
within a high-level element (an HTML “div”). (This is not relevant for operators,
as that is not being separated out as independently displayable content).

o The individual content components of each function should be distinguishable by
RiverWare: a function’s name, description, return data type, “evaluation”
description, mathematical expression, additional comments, and for each
argument: the argument data type, formal name (when supported), “meaning”
description, syntax example and return example.

The FrameMaker "publish" functionality produces HTML, but it does not have the desired
semantic mark-up required by RiverWare. It can't have the mark-up because the source
document does not have the relevant information.

Whenever we do a release with new on-line help (not generally for patch releases), we add a
couple of steps after the release source code branch is created and after on-line help has been
updated for the release:

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 18 of 26

 April 11, 2014

 In Framemaker, publish the two relevant RPL documents (operators, predefined
functions) to HTML.

 Run the Python script to generate two improved html files with image files.
 Copy these files to the builds tree, recompile, commit.

The latest version of FrameMaker (version 12) has a couple different HTML and XML-
generation capabilities. Before starting this project, we will first upgrade FrameMaker -- and our
supporting tools and procedures -- from version 10 to version 12. However FrameMaker 12 will
not be able to completely provide the necessary and desirable data provisions in the generated
files. We will be able to address certain data generation issues with changes to the relevant
source documents. But for some requirements, will need to write a post-processor to transform
the files generated by FrameMaker.

We have experimented a bit with HTML document generation using FrameMaker 12, and have
observed the following issues (some of which we may be able to address with either
FrameMaker configuration changes or document content provisions):

1. RPL Predefined Functions are not contained within their own single HTML element.
2. Text style properties are not optimal (e.g. larger font for non-font-size related

differences).
3. Bullets (in lists of items) are showing up as garbled data.
4. Table cell background color is either not generated, or applies to the whole table instead

of individual cells.
5. Name-anchor ("named destination") strings are not based on content strings (so, as is,

RiverWare would have no way of associating a location within the document with a
particular function or expression type).

6. The generated HTML has in-lined CSS styles, and a ton of them. This is not a
particularly helpful use of CSS, and makes the generated files much larger than they need
to be. This is significant because we will be embedding these files within the RiverWare
executable. Also, even though styled elements have a useful class name, the inlined CSS
style attributes would prevent overriding, as they have higher priority than class-based
styles.

7. Supported image file formats for mathematical expression images are limited to the basic
raster formats (GIF, PNG, JPEG). Vectored graphics (SVG) doesn't seem to be supported
for that. [We are not proposing a solution to this limitation. Raster images will be
presented within RiverWare for this content].

We're proposing that a post-processor be developed, to be applied to files generated from
FrameMaker, to effect the following changes in new generated files:

 Extract only the actual structure, content and hyperlinks from the generated HTML,
dropping all in-lined CSS style attributes.

 Translate HTML CSS style class names to semantic classes based on content. (See
discussion of the example, below*).

 Translate name-anchors and image file names to content-based strings. In the course of
changing image names, the script would also copy the images generated from

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 19 of 26

 April 11, 2014

FrameMaker to new image files with the new name (e.g. based on the RPL Predefined
Function name).

 Generate Qt Resource definition files (.qrc) for binding with RiverWare.

*Appendix B provides file-system links to several versions of a manually cleaned up HTML file
(e.g. with exact style information removed), and the new external CSS file which provides all
styles. This sort of CSS file would be used for all RPL Predefined Function and RPL expression
type topic documents used within RiverWare.

Some experimental work was done to develop a Python-language script to transform HTML
generated from FrameMaker into HTML having the required structure (e.g. RPL Predefined
Functions encapsulated within their own high level element) and semantic markup (e.g. to
identify content for individual function arguments). The basic structure of the original HTML
document is retained. Beyond removing inlined CSS style attributes, markup not explicitly
transformed by the script is retained as is. This script makes use of the Python 3.4 standard
library's XML DOM (Document Object Model) processing "minidom" module.

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 20 of 26

 April 11, 2014

(5) Development Tasks

(A) RPL Document Processing

The goal is to devise and document a process and create supporting tools to export HTML from
the two relevant FrameMaker source files (using FrameMaker 12) -- and from that, (primarily,
with a Python script) generate HTML and supporting image files to be built with RiverWare.
While it’s likely that some goals can be accomplished with changes to FrameMaker settings and
technical changes to the source document, at least some post-processing will ultimately be
required.

FrameMaker setting and technical source document changes (to coerce the generated content into
desirable forms) will mostly be an iterative process with post-processor script development.
After some initial preparation, those won't be separate development tasks. See also the prior
section, "RPL Document Processing".

Development tasks include:

1. Initial Document Preparation / Semantic Styles (where needed) / Link Semantics for
these two documents:

1. RPLPredefinedFunctions.pdf -- RPL Predefined Functions
2. RPLTypesPalette.pdf -- Palette Buttons

We need to ensure that the two source documents include sufficiently meaningful
“paragraph” styles which can be discerned in the generated HTML file. If needed this
may require going through all of the 191 function sections and 60 operators to apply new
semantic-level FrameMaker styles.

Also, the “framing” of links needs to be changed to replace “CLICK HERE” (and similar
expressions) with “See”, and put the link on the name of the item being linked.

2. Predefined Function Processing.
1. Discern function content pieces with FrameMaker style classes and magic

keywords in textual content.
2. Create dictionaries for translating "named destinations" and image file names to

natural names (using actual RPL Predefined Function names). (This is needed for
RiverWare to be able to associate help content with particular RPL functions and
operators).

3. Image file processing. This is just copying image files generated from
FrameMaker to files with the required names; no actual modification to image
data is involved.

4. Generate new HTML output for each function, referring to our own CSS styles.
(See Appendix B example).

3. Palette Button (Expression Type) Processing

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 21 of 26

 April 11, 2014

o Similar steps to previous item, but reusing some common code.

4. Add generation of Qt Resources index file (.qrc). This is used in the RiverWare build to
bind the generated HTML and image files.

5. Document the generation process, including operation of FrameMaker with the two
source documents.

(B) RiverWare Development / Level 1: Access to existing RPL documentation

1. Integrate generated Qt Resources index file (.qrc). Implement and test retrieval functions
for generated HTML and image files based on the names of RPL Predefined Functions
and supported RPL Operators.

2. RPL Predefined Function "editor" dialog enhancements. Deploy a QWebView (from Qt
WebKit) in this dialog. All features here are display-only (except for the issue addressed
in the next step). Note that the code to show this dialog from a RPL Frame (double
clicking on the use of a pre-defined function) is already in place.

3. Explicit handling of hyperlinks in the QWebView created in the prior step. Only links
within the two relevant documents are supported. Links to RPL Predefined Functions
bring up the function’s editor dialog. Links to expression type help shows that document
in the new Help Viewer (see task 5, below), scrolled to the appropriate section.

4. Add "Show Help..." hooks from the RPL Palette's "Predefined Functions" tab. Also,
Question-mark-circle icon button.

5. New Help Viewer dialog (used initially only for supported RPL Operators: the 60
buttons). This includes a QWebView (similar to above). The only active component is a
history combo box to jump to recently viewed topics.

6. In RplFrame, double clicking on a supported expression, show the HTML version of the
RPL Data Types and Palette document in the Help Viewer, scrolled to the appropriate
section.

7. In the Rpl Palette’s "Palette Buttons" tab, implement special button processing and
tooltip. Shift-Clicking shows the Help Viewer with the corresponding topic.

8. Correctness and usability testing, review and revisions.

9. Feature Documentation.

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 22 of 26

 April 11, 2014

(C) Design Level 2 Development: Improvements to RPL documentation

1. Condense leading sentence of some RPL Predefined Functions with their formal
Description text. In the course of this task, we may want to make limited revisions to
accompanying function content.

2. Provide formal argument names to the arguments of the 214 RPL Predefined Functions.
An analysis should be done in a couple passes such that a consistent and desirable
naming convention is devised and documented. See the three proposed options for
adding this information, in the “Design Level 2” section. Also, descriptive content should
be rewritten to refer to the new formal parameter names (where desirable).

3. Enhance post-processor script to appropriately tag formal argument names.

4. Develop RiverWare mechanism to assign formal parameter names to PredefinedFunction
objects, and to retrieve those names for those objects.

5. Display formal parameter names, in place of “arg0”, “arg1”, etc., in simple GUI contexts:
 RPL Predefined Function editor dialog, in the Arguments.
 RPL Palette’s Predefined Functions tab, in the Arguments column of the

function list.

6. Implement tooltip on relevant visual tokens in the RPL Frame, incorporating formal
parameter names where relevant. Note that no tooltip was previously supported here.

7. Use formal argument names in relevant RPL diagnostics. This will involve a good
amount of analysis and code changes, as certain lower-level utilities which generate
diagnostic messages do not currently have access to the name and argument index of the
relevant RPL Predefined Function. There would be value in this sort of support for only
the most likely error conditions.

8. Completion testing and documentation revisions.

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 23 of 26

 April 11, 2014

(6) Development Estimate

Estimate Revision: 4-11-2014, Phil.

Task
Est.

Hours Task Description

(A) RPL Documentation Processing (total: 56)

A1 16 Initial Document Preparation / Semantic Styles (where needed) / Link Semantics

A2 16 Predefined Function Topic Processing
(additional work beyond experimental work already completed).

A3 16 Palette Button Topic Processing

A4 4 Generation of Qt Resources index file (.qrc)

A5 4 Process Documentation

(B) RiverWare Development (total: 84)

B1 12 Integrate generated Qt Resources. Develop lookup utilities.

B2 16 RPL Predefined Function "editor" dialog enhancements

B3 16 Explicit handling of hyperlinks

B4 4 RPL Palette Predef Functions: Add "Show Help..." hooks

B6 8 New Help Viewer dialog

B7 4 RPL Palette Buttons, special button handling

B8 16 Correctness and usability testing, review and revisions.

B9 8 Feature Documentation

(C) Design Level 2 Development: Improvements to RPL documentation (total: 88)

C1 8 Condense function leading sentence / Description text

C2 24 Provide formal argument names, revise related content accordingly

C3 4 Enhance post-processor script to appropriately tag formal argument names.

C4 8 Mechanism to assign formal parameter names to PredefinedFunction instances, and
to retrieve those names for those functions.

C5 4 Display formal parameter names in simple GUI contexts

C6 8 Add tooltips to visual tokens in the RPL Frame, use formal parameter names.

C7 24 ??? Use formal argument names in relevant RPL diagnostics.

C8 8 Completion testing and documentation revisions

 228 TOTAL [hours]

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 24 of 26

 April 11, 2014

Appendix A: RPL Documentation Topics

RiverWare 6.4 Documentation has six (6) documents covering "RPL" topics (including
"Rulebased Simulation"). For the purpose of analyzing the types of information to which this
RiverWare enhancement could apply, three types of topics have been characterized:

(A) Enumerated Item Topics
(B) Discussion Topics
(C) User Interface Description

(A) Enumerated Item Topics:

 RPL Predefined Functions (214 functions in 191 function sections with images for about
77 formulas, 2 workspace screenshot details).

 RPL Operators / Buttons in the RPL Palette (60, in 8 categories).
 RPL Data Types (7) (10 pages).

(B) Discussion Topics

 Units in RPL: Unit operators / Slot Value Units (2 pages)
 RPL Language Structure (8 pages)
 Developing Efficient RPL Expressions [in RPL User Interface] (1 page).
 Hypothetical Simulation Overview [in RPL Predefined Functions] (2 pages).
 How Rulebased Simulation Works [in Rulebased Simulation]

... Rules and Rulesets, Rule Execution, ...

(C) User Interface Description

 RPL Debugging and Analysis Tools
o Building and Validation Errors
o Evaluation and Runtime Errors
o RPL Debugger (12 pages)
o Diagnostics (4 pages)
o Rulebased Simulation Model Run Analysis Tool (link to Model Run Analysis doc)
o RPL Analysis Tool (9 pages)

 RPL Editor Dialogs (32 pages)
 RPL Printing and Formatting (6 pages)
 Exporting and Importing RPL Sets (4 pages)
 RPL External Documentation (user defined) (14 pages)

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 25 of 26

 April 11, 2014

Appendix B: Sample Function HTML and CSS help files

As a demonstration, I edited an HTML file generated from FrameMaker 12 into a "clean" format,
with semantic tags. All formatting and display style information was removed from the HTML
file. Instead, display styles are specified by the illustrated CSS file (see below). The mockup
HTML screenshots in this document are of this munged HTML and CSS files -- rendered in
FireFox.

The idea is that this could be done programmatically, e.g. with a Python script with the use of
XML DOM (and maybe SAX for reading input).

See sample HTML files in this RiverWare documentation directory:

 R:\doc\RPL\EmbedRplDoc\2014\HtmlSpecExamples\
o ElevationToArea-FmOutput.html -- original HTML file from FrameMaker
o ElevationToArea.html -- cleaned up HTML file using CSS shown below.
o ElevationToArea-NoCss.html -- lacking CSS file link
o ElevationToArea-NoImage.html -- image omitted

CSS File -- Semantic and Formatting Classes/Styles Example:

@charset "utf-8";

/* --
 * File: RplFunc.css
 * Edit: Phil, 3-17-2014
 * Mockup for Predefined RPL Function HTML doc import into RiverWare.
 * -- */

/* Semantic Classes */
.RplFunc_Name {} /* function name*/
.RplFunc_RetType {} /* return type */
.RplFunc_ArgType {} /* argument type (attribute: argInx [1..]) */
.RplFunc_ArgName {} /* argument name (attribute: argInx [1..]) */
.RplFunc_Evaluation {} /* evaluation description */
.RplFunc_Comments {} /* other comments */

/* .RplFunc_Syntax_Examp -- syntax example; defined below. */
/* .RplFunc_Return_Examp -- return example; defined below. */

.RplFunc_FunctionHdr {
 font-family: Arial, Helvetica, sans-serif;
 font-size: larger;
 margin-top: 0px;
 margin-bottom: 8px;
}
.RplFunc_CellRowHdr {
 font-family: Verdana, Geneva, sans-serif;
 color: #FFF;
 background-color: #cd7345;

RiverWare: Improved Access to RPL Documentation / Analysis and Design (April 2014) Page 26 of 26

 April 11, 2014

 vertical-align: top;
 font-size: small;
 font-weight: bold;
}
.RplFunc_CellRowHdr:first-child {
 text-align: center;
}
.RplFunc_CellText {
 font-family: Verdana, Geneva, sans-serif;
 vertical-align: top;
 font-size: small;
 margin-left: 4px;
}
.RplFunc_CellText p {
 margin-top: 10px;
 margin-right: 5px;
 margin-bottom: 2px;
 margin-left: 5px;
}
.RplFunc_CellText p:first-child {
 margin-top: 2px;
}
.RplFunc_GUItext {
 font-weight: bold;
 font-family: Verdana, Geneva, sans-serif;
 font-size: small;
}
.RplFunc_ExampleTitle {
 font-family: Verdana, Geneva, sans-serif;
 font-size: small;
 margin-top: 6px;
 margin-bottom: 6px;
}
.RplFunc_Syntax_Examp, .RplFunc_Return_Examp, .RplFunc_RuleCodeIndent {
 font-family: "Courier New", Courier, monospace;
 margin-left: 20px;
 font-size: small;
 margin-top: 6px;
 margin-bottom: 6px;
}
.RplFunc_BlueLink {
 color: #03F;
 text-decoration: none;
}

/* --- (end RplFunc.css) --- */

--- (end) ---

