
RiverWare: Improved Access to RPL Documentation / Analysis and Design (March 2014) Page 1 of 19

RiverWare: Improved Access to RPL Documentation /
 Analysis and Design

Phil Weinstein, CADSWES, 3-20-2014.

This document proposes enhancements to RiverWare (beyond version 6.4) to display online help
content within RiverWare for RPL Predefined Functions and RPL language constructs
(statements and operators).

Contents:

1. Background
a. Task Description
b. RiverWare Documentation Overview
c. Help Content: RPL Predefined Functions
d. Help Content: RPL Statements and Operators
e. Possible Future Document Architecture

2. Requirements Analysis
a. Feature Scope: What Help Topics? Where Shown?
b. Help Content Architecture

3. Design
4. RPL Document Processing
5. Development Tasks
6. Development Estimate
7. Appendices

a. RPL Documentation Topics
b. Sample Function HTML and CSS help files

RiverWare: Improved Access to RPL Documentation / Analysis and Design (March 2014) Page 2 of 19

(1) Background

(1a) Task Description

This analysis and design document addresses this task:

Design and estimate improved access to RPL documentation.

CADSWES staff will design and estimate mechanisms for more convenient access to
RPL documentation. For example, the Predefined Functions tab of the RPL palette should
provide access to function documentation that is comparable to that contained in on-line
help. This includes a description of the purpose of the function as well as meaningful
names and descriptions for the function parameters. Similarly, the Predefined Function
editor should provide convenient access to the same information. RPL editor dialogs
should provide context-sensitive access to on-line help based on the current selection.

(1b) RiverWare Documentation Overview

RiverWare documentation is currently authored with Adobe FrameMaker 10. It consists of about
30 related documents with hyperlinks to specific sections across documents. A one-page top-
level "menu" document provides access to the individual documents. This documentation is
available from these places as PDF files:

1. Online, on the RiverWare website at:
http://www.RiverWare.org/PDF/RiverWare/documentation/

2. From the RiverWare program, stored locally with the RiverWare installation, accessible
from the RiverWare workspace's "Help" menu. This brings up the user's currently
configured PDF reader, typically Adobe Reader.

An important feature of FrameMaker used in RiverWare documentation is the ability to compose
mathematical expressions, displayed with vectored graphics in the generated PDFs. The process
of generating the PDFs includes use of an external tool to implement hyperlinks between PDF
documents.

Appendix A presents an outline of the types of information in the RPL components of
RiverWare documentation. This represents six (6) of the thirty (30) individual RiverWare
documents (including "Rulebased Simulation").

(1c) Help Content: RPL Predefined Functions

RPL Predefined Function documentation is provided in a single FrameMaker-sourced document.
For RiverWare 6.4, it contains 191 functions. 77 of those contain mathematical formulas. One
has an associated graph image.

http://www.riverware.org/PDF/RiverWare/documentation/

RiverWare: Improved Access to RPL Documentation / Analysis and Design (March 2014) Page 3 of 19

• RPL Predefined Functions
http://www.RiverWare.org/PDF/RiverWare/documentation/RPLPredefinedFunctions.pdf

In PDF, mathematical formulas look very good, e.g. when zooming. They are generated as
vectored graphics in PDF files. However when generating HTML, only raster graphics files are
generated (i.e. GIF or PNG or JPEG). The SVG scaled vector graphics format would be
preferable, as that is currently supported in all modern browsers (including in Qt WebKit used in
RiverWare).

Each RPL Predefined Function has its own section, with most of the information laid out in a
table. Here is an example. Note: not all functions have an introductory sentence above the table.
We are planning on moving that text to either the Comments section or under the table.

http://www.riverware.org/PDF/RiverWare/documentation/RPLPredefinedFunctions.pdf

RiverWare: Improved Access to RPL Documentation / Analysis and Design (March 2014) Page 4 of 19

(1d) Help Content: RPL Statements and Operators

RPL Statements and Operators represent most of the sixty (60) buttons on the first tab of the
RPL Palette. (See RPL Palette images in the next section). They are described in the "Palette"
portion of this online help document:

• RPL Data Types and Palette
http://www.RiverWare.org/PDF/RiverWare/documentation/RPLTypesPalette.pdf

Help content for each of these items is presented as one row in a table of related items. Here is an
example:

This is a good presentation for full-page media. But when displaying content for just one item
(one row) in the user interface, we may prefer to rearrange the content. (This should be done
automatically either in the preparation of content for RiverWare, or dynamically within
RiverWare).

As a fundamental quality of the use of RPL Palette buttons, each corresponds to a class of
selectable sub-expressions within a RPL block or expression shown in a RPL Frame. Clicking on
a button replaces the selected sub-expression with a new instance of the button's RPL language
construct.

http://www.riverware.org/PDF/RiverWare/documentation/RPLTypesPalette.pdf

RiverWare: Improved Access to RPL Documentation / Analysis and Design (March 2014) Page 5 of 19

(1e) Possible Future Document Architecture

In the future we may want to consider a more sophisticated structure and process for all
RiverWare documentation which would support ideal presentations in these media:

1. Hard-copy printing / whole chapters or books, or individual items.
2. External viewer/browser.
3. RiverWare GUI / panels within existing application dialogs or separate windows.

Some of the qualities we will want from a modernized RiverWare documentation system are:

1. Single-source for all media: Print, External viewer (browser), RiverWare GUI panels and
windows.

2. Variable width presentations with wrapped text. It should be possible to reasonably view
documentation content within a narrow window or "panel". It should also look good in a
printed page format.

3. Flexible granularity. It should be possible to present individual sections of the RiverWare
documentation, e.g. down to the level of individual RPL Predefined Function Arguments.
Also, references to relevant sections should be accessible programmatically from the
RiverWare program.

Existing qualities and capabilities of our current document infrastructure which will continue to
be important include:

4. Support for hyperlinks, contents and index generation.
5. Support for easy authoring of mathematical formulas and inclusion of externally

generated images. (Ideally, when generating HTML/XML output, formula images should
be generated using high-quality SVG vectored graphics files, rather than GIF or PNG or
JPEG raster graphics).

We may want to eventually use a content management / publishing tool supporting the DITA
("Darwin Information Typing Architecture") standard, such as the structured mode of operation
of FrameMaker. With this sort of system, we would probably choose to convey help content to
RiverWare in XML files, and use XSLT to generate HTML inside RiverWare.

RiverWare: Improved Access to RPL Documentation / Analysis and Design (March 2014) Page 6 of 19

(2) Requirements Analysis

(2a) Feature Scope: What Help Topics? Where Shown?

This proposal focuses on two of the "enumerated item" topics (among the various RPL
documentation topics listed in Appendix A).

1. RPL Predefined Functions (191 functions).
2. RPL Statements and Operators / Buttons in the RPL Palette (60, in 8 categories).

The places within the RiverWare RPL GUI in which online help for these topics is relevant are:

1. RPL Palette / Palette Buttons Tab (for "statements and operators" help).
2. RPL Palette / Predefined Functions Tab (for "functions" help).
3. RPL Frame (editor panels) in which a predefined functions, statements and operators are

used / Selected sub-expression (for both types of help).

RiverWare: Improved Access to RPL Documentation / Analysis and Design (March 2014) Page 7 of 19

Content for these online help
topics could potentially be
displayed in these places.
These possibilities are
discussed more below.

1. In a panel within the
dialog from which
context-help was
requested.

2. In a panel within the
dialog corresponding
to the item for which
context-help is being
requested.

3. In a single reusable
(singleton) online help
viewer window within
RiverWare.

4. In an external
viewer/browser (e.g.
Adobe Reader for
PDFs, or a web
browser for HTML).

(1) Showing help within the
dialog from which context-
help was requested: There
are several types of dialogs in
which RPL Frames (editor
panels) are used (this being
one of the types of places
from which context help
would be requested). Each of
these contexts, plus the two
relevant RPL Palette tabs (see
above) have their own GUI
layout constraints, and would
require different and separately implemented changes to add a "help" panel. We're deciding that
this lack of conformity and broad development scope is undesirable.

(2) Showing help within the dialog corresponding to the item for which context-help is
being requested: Of the items having help topics supported by this enhancement, only RPL
Predefined Functions have an associated dialog. And, in fact, the RPL Frame panel in the RPL
Function Editor dialog (for user-defined functions) doesn't currently have a use when showing a

RiverWare: Improved Access to RPL Documentation / Analysis and Design (March 2014) Page 8 of 19

predefined function. The panel just shows this message: "See Online Help for documentation of
predefined functions." This is a natural place to show documentation for the predefined function.

(3) Showing help within a single reusable (singleton) online help viewer window within
RiverWare: Being that individual RPL statements and operators don't have their own dialog,
this is a reasonable place in which to show help topics for those RPL language constructs.

(4) Showing help within an external viewer/browser. (This is what's currently being done for
online help, to show PDFs in a PDF viewer, typically Adobe Reader). There are ways of having
certain versions of certain viewers navigate to specific places within an external document. How
this is done can be dependent on which PDF viewer program the user has installed and
configured. It is not generally a reliable approach for implementing primary help functions. If
possible, this approach will be attempted for links within RPL Predefined Function and RPL
language-construct help displayed in RiverWare (to other online help published in PDF). But we
will not use this approach for that primary help content (i.e. the new functionality proposed by
this document).

(2b) Help Content Architecture

Given the set of requirements of a future, modernized documentation architecture (described
above), it's a forgone conclusion that RiverWare documentation will need to support HTML as a
display format* in addition to PDF. This is not to say that HTML should be the source format.
We will want to manage our content with high level tools supporting associated meta-data (so
that specific content can be accessed programmatically) and integrated advanced authoring
capabilities (such as for mathematical formula display).

*Technically, conveying documentation content to the RiverWare program with XML
and associated XSLT files for generating HTML would be the preferred approach. This is
effectively equivalent to providing HTML for display, but also with the advantage of
providing well-defined and easily usable meta-data.

With respect to the current task of enhancing RiverWare to display some RiverWare RPL
documentation within the GUI, an intermediate step is doing so with the HTML format --
regardless of how that HTML content is generated. In this way, any use of that HTML content
by the RiverWare program will not have to be changed very much when a new documentation
architecture is devised.

Note: RiverWare's recently developed model report capabilities demonstrate displaying
HTML content with CSS and JavaScript. This makes use of Qt WebKit in Qt 4.8 which
continues to be in active development in Qt 5. Qt WebKit does support transforming
XML documents to HTML via XSLT. It also supports SVG, scaled vector graphics,
image file rendering. RiverWare is currently using Qt 4.8.5. We anticipate upgrading to
Qt 5.2 or beyond within the next year or two.

Note: We did take a look at some possible technologies to display PDF (existing
RiverWare documentation) with Qt in RiverWare. That would require integration of new

RiverWare: Improved Access to RPL Documentation / Analysis and Design (March 2014) Page 9 of 19

special 3rd-party libraries (e.g. Poppler, or the Adobe PDF Library SDK). But the fact
that PDF content is presented with a fixed-width limits the value of this approach, given
that, in some contexts, we would want to display documentation content in narrower
panels.

The scope of this particular development is limited to providing access to the most needed parts
of the RPL documentation using our current document authoring procedures and tools (using
Adobe FrameMaker), possibly accommodated with changes to the documentation source, an
upgrade to a newer version of FrameMaker (upgrading from version 10 to 12), and post-
processing of generated HTML files.

RiverWare: Improved Access to RPL Documentation / Analysis and Design (March 2014) Page 10 of 19

(3) Design
The following RPL online help topics can be displayed within the RiverWare GUI:

1. RPL Predefined Functions (191 functions).
2. RPL Statements and Operators / Buttons in the RPL Palette (60, in 8 categories).

RPL Predefined Function help content is displayed in the "editor" dialog for the function -- in
place of the formerly empty panel which used to display only the message, "See Online Help for
documentation of predefined functions." (The following image is a pre-development mockup).

RPL Statement and Operator help content is displayed in a single separate RiverWare Help
window (a singleton) -- not illustrated here. A "history" combo-box allows the user to revisit
help topics recently shown in this dialog.

Content for these two different types of dialogs is provided to RiverWare as HTML and may
contain references to image files of a format typically supported in webpages (PNG, GIF, JPG,
SVG). To the extent possible, text wraps to the available visible horizontal space, though the

RiverWare: Improved Access to RPL Documentation / Analysis and Design (March 2014) Page 11 of 19

presence of an image (e.g. the mathematical expression shown above) may constrain the
minimum content width. In that case, a horizontal scrollbar is displayed when the panel is
narrow.

The help content includes hyperlinks to particular "named destinations" within the 30 (or so)
RiverWare help PDF documents. When shown in RiverWare dialogs, these links at least show
the referenced PDF file in the user's configured PDF viewer (generally Adobe Reader). It may or
may not be possible to navigate directly to the named destination within the target document.
(This may depend on the user's environment).

A RPL Predefined Function "edit" dialog (showing help content) can be shown from these
places within RiverWare, as indicated:

1. From a RPL Frame (editor), double clicking on the use of a RPL Predefined Function.
2. From the RPL Palette's "Predefined Functions" tab (supporting single-item selection in a

list or tree of the available predefined functions):
1. Function >> "Show Help..." menu operation.
2. "Show Help..." context-menu (right-click) operation
3. Question-mark-circle icon button, to the right of the "Set Name" row.

The new RiverWare Help dialog (initially used only for showing help for a RPL Statement or
Operator) can be shown from these places within RiverWare, as indicated:

• From a RPL Frame (editor), double clicking on the use of a RPL Statement or Operator.
• From the RPL Palette's "Palette Buttons" tab, Right-Clicking OR Shift-Left-Clicking on a

button.
... the tooltip on those buttons show this message on the 2nd line: "Shift-Click to show
help".

Note that, in all three tabs of the RPL Palette, double clicking an enabled item (or just single
clicking on a palette button) causes the selected sub-expression in the current RPL Frame to be
replaced with the palette item's content! So obviously those events can't be used for showing
help content.

The new "help" functionality may exacerbate a usability problem -- it may be too easy to
unintentionally change a RPL block or user-defined function. We might want to consider
adding a RPL Edit Lock which disables changes to any RPL code within RiverWare.

Technical Design Issues

The help content is "logically" provided to RiverWare as individual HTML documents -- one for
each help topic. But instead of distributing hundreds of separate help HTML and image files with
RiverWare, these files are embedded within the RiverWare executable using Qt Resources. (Qt
Resources have previously been used in RiverWare for binding icon image files). RiverWare
needs to associate the embedded help topic "documents" with the corresponding entities within

RiverWare: Improved Access to RPL Documentation / Analysis and Design (March 2014) Page 12 of 19

RiverWare (i.e. RPL Predefined Functions, and such). This is done through file and Qt Resource
naming conventions.

(4) RPL Document Processing
It is important for us to maintain only a single copy of RiverWare Online Help document source
files. We need a way of getting the help content from our FrameMaker-sourced documents into
RiverWare.

The largest part of the development process will be the creation of a publishing process and tools
(a post-processing script) used in generating the required data from FrameMaker. The end-
product of that publishing process consists of a set of files which are bound to the RiverWare
executable. The format design of those files is effectively an interface from which both "sides"
can be independently developed:

1. Generation of help content and supporting data from FrameMaker help document source.
2. RiverWare enhancements to support that help content.

The latest version of FrameMaker (version 12) has a couple different HTML and XML-
generation capabilities. Before starting this project, we will first upgrade FrameMaker -- and our
supporting tools and procedures -- from version 10 to version 12. However FrameMaker 12 will
not be able to completely provide the necessary and desirable data provisions in the generated
files. We will be able to address certain data generation issues with changes to the relevant
source documents. But for some requirements, will need to write a post-processor to munge the
files generated by FrameMaker. (I recommend using the Python scripting language which
supports both DOM and SAX XML document processing).

We have experimented a bit with HTML document generation using FrameMaker 12, and have
observed the following issues (some of which we may be able to address with either
FrameMaker configuration changes or document content provisions):

1. Text style properties are not optimal (e.g. larger font for non-font-size related
differences).

2. Table cell background color is either not generated, or applies to the whole table instead
of individual cells.

3. It's possible that only the "traditional" way of generating HTML (which lacks certain
newer provisions) has the ability to generate separate files for different sections (e.g.
defined as starting with a "Header1" element). But even with that, there doesn't seem to
be a way of having the file name correspond to a content-dependent character string.

4. Similarly name-anchor ("named destination") strings are not based on content strings.
5. The generated HTML has in-lined CSS styles, and a ton of them. This is not a

particularly helpful use of CSS, and makes the generated files much larger than they need
to be. This is significant because we will be embedding these files within the RiverWare
executable.

RiverWare: Improved Access to RPL Documentation / Analysis and Design (March 2014) Page 13 of 19

6. Supported image file formats for mathematical expression images are limited to the basic
raster formats (GIF, PNG, JPEG). Vectored graphics (SVG) doesn't seem to be supported
for that.

We're proposing that a post-processor be developed, to be applied to files generated from
FrameMaker, to effect the following changes in new generated files:

• Extract only the actual structure, content and hyperlinks from the generated HTML,
dropping all in-lined CSS style attributes.

• Translate HTML CSS style class names to semantic classes based on content. (See
discussion of the example, below*).

• ... similarly, translate name-anchors to content-based strings, and image file names.
• If necessary, split monolithic HTML files into separate well-named files.
• Generate Qt Resource definition files (.qrc) for binding with RiverWare.

*Appendix B provides file-system links to several versions of a manually cleaned up HTML file
(e.g. with exact style information removed), and the new external CSS file which provides all
styles. This sort of CSS file would be used for all RPL Predefined Function and RPL language
construct topic documents within RiverWare.

RiverWare: Improved Access to RPL Documentation / Analysis and Design (March 2014) Page 14 of 19

(5) Development Tasks

(A) RPL Document Processing

The goal is to devise and document a process and create supporting tools to export HTML (or
XML) from the two relevant FrameMaker source files (using FrameMaker 12) and from that,
(primarily, probably with a Python script) generate HTML and supporting data files to be built
with RiverWare. While it’s likely that some goals can be accomplished with changes to
FrameMaker settings and technical changes to the source document, at least some post-
processing will ultimately be required. That being the case, we probably shouldn't spend too
much time on the former types of changes since, once a script infrastructure is developed, it
should be relatively easy to effect needed changes with mainly a post-processing script.

FrameMaker setting changes and technical source document (to coerce the generated content into
desirable forms) will mostly be an iterative process with post-processor script development.
After some initial preparation, those won't be separate development tasks. See also the prior
section, "RPL Document Processing".

Development tasks include:

1. Insure that the two source documents include distinctly styled headings which can be
discerned in the generated HTML file. If needed this may require going through all of the
191 functions and 60 language constructs to apply new semantic-level FrameMaker
styles.

1. RPLPredefinedFunctions.pdf -- RPL Predefined Functions
2. RPLTypesPalette.pdf -- Palette Buttons

2. Create Python Script framework and running stub. The script reads in the generated
HTML file(s) as an XML DOM document, and trivially iterates over the elements. (It is
important that FrameMaker generates HTML files which are proper XML).

3. Predefined Function Processing.
1. Discern function content pieces with FrameMaker style classes and magic

keywords in textual content.
2. Create dictionaries for translating "named destinations" and image file names to

natural names (using actual RPL Predefined Function names). (This is needed for
RiverWare to be able to associate help content with particular RPL functions and
language constructs).

3. Image file processing. This is just copying image files generated from
FrameMaker to files with the required names; no actual image processing is
involved.

4. Generate new HTLM output for each function, referring to our own CSS styles.
(See Appendix B example).

4. Palette Button (Statements, Operators) Processing
o Similar steps to previous item, but reusing some common code.

5. Add generation of Qt Resources index file (.qrc). This is used in the RiverWare build to
bind the generated HTML and image files.

RiverWare: Improved Access to RPL Documentation / Analysis and Design (March 2014) Page 15 of 19

6. Document the generation process, including operation of FrameMaker with the two
source documents.

(B) RiverWare Development

1. Integrate generated Qt Resources index file (.qrc). Implement and test retrieval functions
for generated HTML and image files based on the names of RPL Predefined Functions
and supported RPL language constructs.

2. RPL Predefined Function "editor" dialog enhancements. Deploy a QWebView (from Qt
WebKit) in this dialog. All features here are display-only (except for the issue addressed
in the next step). Note that the code to show this dialog from a RPL Frame (double
clicking on the use of a pre-defined function) is already in place.

3. Explicit handling of hyperlinks in the QWebView created in the prior step. If it is
possible to determine that the link is to another predefined function, show that function's
"editor" dialog. Otherwise, open the referenced PDF document (with a correctly devised
path) in the user's standard PDF viewer application. If possible, navigate to the specified
"named destination" in that document.

4. Add "Show Help..." hooks from the RPL Palette's "Predefined Functions" tab. Also,
Question-mark-circle icon button.

5. New Help Viewer dialog (used initially only for supported RPL language constructs: the
60 buttons). This includes a QWebView (similar to above). The only active component is
a history combo box to jump to previously (or again, subsequently) viewed topics.

6. In RplFrame, double clicking on a Statement or Operator, show the Help Viewer with
corresponding help topic.

7. In the Rpl Palette’s "Pallet Buttons" tab, implement special button processing and tooltip.
Shift-Clicking shows the Help Viewer with the corresponding topic.

8. Correctness and usability testing, review and revisions.
9. Feature Documentation.

RiverWare: Improved Access to RPL Documentation / Analysis and Design (March 2014) Page 16 of 19

(6) Development Estimate

Task
Est.

Hours Task Description

(A) RPL Documentation Processing (total: 96 .. 128)
A1 4 (..12) Initial Document Preparation / Semantic Styles (where needed)

A2 16 Python Script framework, running stub.

A3 40 (..56) Predefined Function Topic Processing

A4 24 (..32) Palette Button Topic Processing

A5 8 Generation of Qt Resources index file (.qrc)

A6 4 Process Documentation

(B) RiverWare Development (total: 88)
B1 8 Integrate generated Qt Resources. Develop lookup utilities.

B2 16 RPL Predefined Function "editor" dialog enhancements

B3 16 Explicit handling of hyperlinks

B4 4 RPL Palette Predef Functions: Add "Show Help..." hooks

B6 16 New Help Viewer dialog

B7 4 RPL Palette Buttons, special button handling

B8 16 Correctness and usability testing, review and revisions.

B9 8 Feature Documentation

 184 (..218) TOTAL [hours]

RiverWare: Improved Access to RPL Documentation / Analysis and Design (March 2014) Page 17 of 19

Appendix A: RPL Documentation Topics
RiverWare 6.4 Documentation has six (6) documents covering "RPL" topics (including
"Rulebased Simulation"). For the purpose of analyzing the types of information to which this
RiverWare enhancement could apply, three types of topics have been characterized:

(A) Enumerated Item Topics
(B) Discussion Topics
(C) User Interface Description

(A) Enumerated Item Topics:

• RPL Predefined Functions (191 functions with images for about 77 formulas, 3
workspace screenshot details, 1 graph).

• RPL Statements and Operators / Buttons in the RPL Palette (60, in 8 categories).
• RPL Data Types (7) (10 pages).

(B) Discussion Topics

• Units in RPL: Unit operators / Slot Value Units (2 pages)
• RPL Language Structure (8 pages)
• Developing Efficient RPL Expressions [in RPL User Interface] (1 page).
• Hypothetical Simulation Overview [in RPL Predefined Functions] (1 page).
• How Rulebased Simulation Works [in Rulebased Simulation]

... Rules and Rulesets, Rule Execution, ...

(C) User Interface Description

• RPL Debugging and Analysis Tools
o Building and Validation Errors
o Evaluation and Runtime Errors
o RPL Debugger (12 pages)
o Diagnostics (4 pages)
o Rulebased Simulation Model Run Analysis Tool (link to Model Run Analysis doc)
o RPL Analysis Tool (9 pages)

• RPL Editor Dialogs (32 pages)
• RPL Printing and Formatting (6 pages)
• Exporting and Importing RPL Sets (4 pages)
• RPL External Documentation (user defined) (14 pages)

RiverWare: Improved Access to RPL Documentation / Analysis and Design (March 2014) Page 18 of 19

Appendix B: Sample Function HTML and CSS help files
As a demonstration, I edited an HTML file generated from FrameMaker 12 into a "clean" format,
with semantic tags. All formatting and display style information was removed from the HTML
file. Instead, display styles are specified by the illustrated CSS file (see below). The mockup
HTML screenshots in this document are of this munged HTML and CSS files -- rendered in
FireFox.

The idea is that this could be done programmatically, e.g. with a Python script with the use of
XML DOM (and maybe SAX for reading input).

See sample HTML files in this RiverWare documentation directory:

• R:\doc\RPL\EmbedRplDoc\2014\HtmlSpecExamples\
o ElevationToArea-FmOutput.html -- original HTML file from FrameMaker
o ElevationToArea.html -- cleaned up HTML file using CSS shown below.
o ElevationToArea-NoCss.html -- lacking CSS file link
o ElevationToArea-NoImage.html -- image omitted

CSS File -- Semantic and Formatting Classes/Styles Example:

@charset "utf-8";

/* --
 * File: RplFunc.css
 * Edit: Phil, 3-17-2014
 * Mockup for Predefined RPL Function HTML doc import into RiverWare.
 * -- */

/* Semantic Classes */
.RplFunc_Name {} /* function name*/
.RplFunc_RetType {} /* return type */
.RplFunc_ArgType {} /* argument type (attribute: argInx [1..]) */
.RplFunc_ArgName {} /* argument name (attribute: argInx [1..]) */
.RplFunc_Evaluation {} /* evaluation description */
.RplFunc_Comments {} /* other comments */

/* .RplFunc_Syntax_Examp -- syntax example; defined below. */
/* .RplFunc_Return_Examp -- return example; defined below. */

.RplFunc_FunctionHdr {
 font-family: Arial, Helvetica, sans-serif;
 font-size: larger;
 margin-top: 0px;
 margin-bottom: 8px;
}
.RplFunc_CellRowHdr {
 font-family: Verdana, Geneva, sans-serif;
 color: #FFF;
 background-color: #cd7345;

RiverWare: Improved Access to RPL Documentation / Analysis and Design (March 2014) Page 19 of 19

 vertical-align: top;
 font-size: small;
 font-weight: bold;
}
.RplFunc_CellRowHdr:first-child {
 text-align: center;
}
.RplFunc_CellText {
 font-family: Verdana, Geneva, sans-serif;
 vertical-align: top;
 font-size: small;
 margin-left: 4px;
}
.RplFunc_CellText p {
 margin-top: 10px;
 margin-right: 5px;
 margin-bottom: 2px;
 margin-left: 5px;
}
.RplFunc_CellText p:first-child {
 margin-top: 2px;
}
.RplFunc_GUItext {
 font-weight: bold;
 font-family: Verdana, Geneva, sans-serif;
 font-size: small;
}
.RplFunc_ExampleTitle {
 font-family: Verdana, Geneva, sans-serif;
 font-size: small;
 margin-top: 6px;
 margin-bottom: 6px;
}
.RplFunc_Syntax_Examp, .RplFunc_Return_Examp, .RplFunc_RuleCodeIndent {
 font-family: "Courier New", Courier, monospace;
 margin-left: 20px;
 font-size: small;
 margin-top: 6px;
 margin-bottom: 6px;
}
.RplFunc_BlueLink {
 color: #03F;
 text-decoration: none;
}

/* --- (end RplFunc.css) --- */

--- (end) ---

	(1) Background
	(1a) Task Description
	(1b) RiverWare Documentation Overview
	(1c) Help Content: RPL Predefined Functions
	(1d) Help Content: RPL Statements and Operators
	(1e) Possible Future Document Architecture

	(2) Requirements Analysis
	(2a) Feature Scope: What Help Topics? Where Shown?
	(2b) Help Content Architecture

	(3) Design
	Technical Design Issues

	(4) RPL Document Processing
	(5) Development Tasks
	(A) RPL Document Processing
	(B) RiverWare Development

	(6) Development Estimate
	Appendix A: RPL Documentation Topics
	Appendix B: Sample Function HTML and CSS help files
	CSS File -- Semantic and Formatting Classes/Styles Example:

