
Issue 29 · Q1 2009

Contents

Qt 4.5.0 Release Makes a Splash . 1

Translucent Widgets in Qt . 1

Experimenting with the Qt Help System . 3

The Qt Jambi Generator . 4

Qt News . 9

Qt 4.5.0 Release Makes a Splash

On 3 March 2009, Qt released a mega-product release

including the much anticipated Qt 4.5, the Qt Creator 1.0

IDE, and Qt’s very first SDK. It was received with open arms,

nearly paralyzing our servers for a slight moment, which have

since gone on to serve about 13 TB of Qt files so far.

What is particularly interesting about this jumbo release is the ad-

dition of the LGPL licensing option. This opens up the doors to

millions of developers, making it cost-effective to create applica-

tion masterpieces powered by Qt. This release also introduces a

new support and service offering to all Qt users regardless of the

license choice.

Of course, it would not be a jumbo release if we did not mention

the fact that Qt Software will be opening the Qt source code repos-

itories, making it easier for you to contribute patches and add-ons.

The Qt 4.5 release concentrated on enhancing Qt’s performance,

adding significant improvements to WebKit, porting Qt to Cocoa

and a bundle of other key features. With the simultaneous release

of Qt Creator 1.0 and the Qt SDK, we are sure that you have more

than enough to play around with.

Get started with Qt 4.5, Qt Creator 1.0 and the Qt SDK, and

learn about the new features by visiting this link:

http://www.qtsoftware.com/products/whats-new-in-qt/whats-new-in-qt

New Demos and Examples in Qt 4.5

The Qt 4.5.0 release is not short of new examples and demos,

showcasing new features and covering useful techniques.

New examples cover drag and drop, data-aware widgets, item

views, text handling and XML manipulation, and even an

example aimed at developers on Embedded Linux.

Translucent Widgets in Qt

A new and unflaunted feature in Qt 4.5 is translucent top-level

widgets—windows that one can see through. Applications that

use translucency—many media players, for instance—have

become a common sight on today’s desktops, and requests

about this feature are quite common on the Qt mailing lists.

Surprisingly, there are not many GUI toolkits out there that

support translucency in a cross-platform way, so we saw the

need to flaunt this feature by writing this article.

The process of applying translucency effects to Qt widgets is triv-

ial; simply use colors with an alpha channel while painting the wid-

gets with a QPainter. If you want the entire widget to have the same

degree of translucency, we have a nice convenience function that

removes the hassle of painting the widget yourself. In this article,

we will explore the possibilities Qt gives us by implementing a me-

dia player (that is, an empty and silent front-end of a media player)

and an analog clock.

A Translucent Media Player

In this first example, we let the widget, the media player, keep the

same degree of translucency. As we will see later, Qt also supports

per-pixel translucency effects.

We start off by giving an image of the player to show what we want

to achieve:

When the mouse is over the media player,we keep it opaque.When

the mouse leaves the player, we set the player to be translucent.

Luckily for us, Qt provides a convenience function to achieve such

effects. Here are the two event handlers that are invoked when the

mouse enters and leaves the player.

void Player::enterEvent(QEvent *event)

{

 setWindowOpacity(1.0);

}

void Player::leaveEvent(QEvent *event)

{

 setWindowOpacity(0.5);

}

Developers on Windows 2000 and later, Mac OS X, and modern

X11platforms have had the ability to change the opacity of a whole

window for some time. This effect is useful, but limited, especially

if we need to change the opacity of individual regions or pixels.

The limitations of this effect are highlighted in the case where

we want to apply a mask to the widget to make an unusually-

shaped window—see Qt’s Shaped Clock example for details.

http://www.qtsoftware.com/products/whats-new-in-qt/whats-new-in-qt

2 Qt Quarterly

Shaped windows created in this way often have jagged outlines

because there is no way to blend their edges with their surround-

ings.

What we really want is to be able to make individual pixels at

the edge of the window translucent while keeping other parts of the

window opaque. The next example shows how this can be done.

A Translucent Analog Clock

In this example, we paint the widget using colors with an alpha

channel. We return now to the familiar analog clock found in Qt’s

standard examples. But we will beef it up a notch by making the

widget transparent outside of the clock and giving the center of

the clock a nice translucent effect. You can see an image of the

clock below.

Let’s look at the header file of our translucent clock:

class Clock : public QWidget

{

 Q_OBJECT

public:

 Clock(QWidget *parent = 0);

 QSize sizeHint() const;

protected:

 void mouseMoveEvent(QMouseEvent *event);

 void mousePressEvent(QMouseEvent *event);

 void paintEvent(QPaintEvent *event);

private:

 QPoint dragPosition;

};

Since we don’t have a window frame, we make it possible to move

the clock by dragging it with the mouse. We implement this in

mouseMoveEvent() and mousePressEvent(). The dragPosition keeps

track of where the player is located on the screen.

But it is the translucent painting that interests us here. We do all

of that in the paintEvent() function. However, before we can start

painting, we need to turn translucency on. The code that does this

lives in the constructor.

Clock::Clock(QWidget *parent)

 : QWidget(parent, Qt::FramelessWindowHint |

 Qt::WindowSystemMenuHint)

{

 ...

 setAttribute(Qt::WA_TranslucentBackground);

 ...

 setWindowTitle(tr("Analog Clock"));

}

Setting the Qt::WA_TranslucentBackground widget flag is all that is

required before we start painting. In addition, the areas we don’t

paint in will become fully transparent (unless we decide to paint

the background in an opaque color, of course). Note also that we

set the Qt::FramelessWindowHint window hints to get a frameless

window.

We move on to the painting code:

void Clock::paintEvent(QPaintEvent *)

{

 ...

 QPainter painter(this);

 painter.setRenderHint(QPainter::Antialiasing);

The first thing we do is to set the anti-aliasing rendering hint. As

mentioned, this gives the clock the nice, smooth outline. Next, we

start painting:

QRadialGradient gradient(0.0, 0.0, side*0.5,

 0.0, 0.0);

 gradient.setColorAt(0.0, QColor(255, 255, 255, 255));

 gradient.setColorAt(0.1, QColor(255, 255, 255, 31));

 gradient.setColorAt(0.7, QColor(255, 255, 255, 31));

 gradient.setColorAt(0.8, QColor(0, 31, 0, 31));

 gradient.setColorAt(0.9, QColor(255, 255, 255, 255));

 gradient.setColorAt(1.0, QColor(255, 255, 255, 255));

 painter.setPen(QColor(0, 0, 0, 32));

 painter.setBrush(gradient);

 painter.drawEllipse(-side/2.0 + 1, -side/2.0 + 1,

 side - 2, side - 2);

 ...

As you can see, we do not have to do anything special with the

painter. After setting the Qt::WA_TranslucentBackground attribute,

we can just paint as usual. Here, we draw the inner circle of the

clock using a translucent colored radial gradient. It is this that gives

the effect inside the clock, as you can see from the screenshot.

We will not bore you with a full walkthrough of the

paintEvent() function.Suffice to say, we paint the rest of the clock;

i.e., both hands, and the hour and minute markers on the band.

The X Server and Window Managers on Linux

On Windows 2000 (and later versions) and on the Mac, translucen-

cy and transparency should work out of the box. On Linux, some

tweaking may be required—as is often the case with state of the

art graphic effects (and often some of the not-so-fancy effects, too).

Notably, the X server needs to support ARGB pixel values and a

compositing window manager is required.

We cannot go into details on all available distributions and win-

dow managers. This is mainly because it would take up to much

space in this small article (and it has not been possible to check up

on them all). A quick Web search should give you the information

you need. As an example, we can mention that on Kubuntu using

KDE 3, we need to explicitly turn translucency on as it is consid-

ered experimental. With the new KDE 4, it is turned on by default;

in fact, several desktop effects that come with KDE 4 use translu-

cency effects.

The End?

There are many possibilities when it comes to translucent widgets.

In this article, we have only played with top-level widgets. It is also

possible to paint child widgets using translucent colors. This could

be used for translucent item views, for instance.

As mentioned, the media player is now just an empty, rather dull

application. We are planning to extend it with animations using

the new Qt Animation Framework, which is planned to be released

in Qt 4.6. For good measure, we might also implement the media

functionality using the Phonon multimedia framework. So stay

tuned for further development.

Geir Vattekar is a Technical Writer at Qt Software.

Writing aside, he enjoys interactive fiction and ma-

chine learning. More often than not, however, he

is found at home with a cup of tea and Bach on

the stereo.

Issue 29 Qt Quarterly3

Experimenting with the Qt Help System

Qt’s Help System comes with a powerful full text search

back-end based on CLucene. CLucene is the C++ port of

Lucene—a high-performance, full-featured text search engine

written in Java. Previously, we wrote our own search engine

for use with Qt Assistant. However, with the release of Qt

4.4, we began using CLucene to provide a fully-fledged search

solution.

To illustrate a use case different from Qt Assistant’s doc-

ument search, we came up with an example on how to use

QHelpSearchEngine as the base for a predictive text implementation.

This experiment is inspired by an example found in a book on the

original Lucene search engine. In this article, we’ll concentrate on

the parts of the example that deal with the Qt Help System; the full

example code is available from the Qt Quarterly Web site.

Using QHelpSearchEngine Beyond Qt Assistant

The example displays a small cellular phone-like interface, with

numerical buttons mapped to groups of characters. As the user

presses keys on the keypad, the sequence of key presses will be

saved, and the display will suggest a word that fits the sequence

typed. If there is more than one search result, the user can iterate

through them.

Typically, CLucene can index several files at the same time.

So, in our implementation, we put each word into a separate file.

However, we need to build our own compressed help file with

words we would like to use in this example.

Generating the Help Files

First, we generate the files required for the full text search: a help

project file (.qhp) and a help collection project file (.qhcp). We be-

gin by running the pd application with the -generate command.

This command will build the .qhp and .qhcp files. Ensure that your

PATH variable has been set correctly, so that the qcollectiongener-

ator command line application can be located.

Based on the word list file, word.lst, that is included in the

example, the application will generate the files that provide the

necessary content to be used in the full text search.

So, how does all this work under the hood? To answer that ques-

tion, let’s take a look at the Generator class. The constructor builds

a QHash containing a mapping between the characters and their

number on the keypad. This makes it possible to represent a word

as a sequence of key presses. It is such sequences we will search

for in the QHelpSearchEngine.

Generator::Generator()

 : appPath(qApp->applicationDirPath())

{

 QStringList ncList;

 ncList << "1abc" << "2def" << "3ghi" << "4jkl"

 << "5mno" << "6pqrs" << "7tuv" << "8wxyz";

 foreach(const QString& nc, ncList) {

 for (int i = 1; i < nc.length(); ++i)

 hash.insert(nc.at(i), nc.at(0));

 }

}

Now we need to generate the files for CLucene to index. This is

done by reading the word.lst content line by line and write each

word back into a file named after it. The written file is stored in a

list that will provide the files to be included in our .qhp file. Notice

that we save each word as their numeric sequence in the files.

We still have the mapping between the numeric sequence and the

actual word (since each file name contains the word), and we can

use that to show matches in the display.

A Helpful Reminder

• Qt Help Project (.qhp): The input file for the help generator,

containing table of contents, indices, and references to the

actual documentation files (.html).

• Qt Help Collection Project (.qhcp):The input file for the help

collection generator, containing references to .qch files to be

included in the collection.

• Qt Compressed Help (.qch): The output file of the help

generator—a binary file containing information specified in

the .qhp and compressed documentation files.

• Qt Help Collection (.qhc): The output of the help collection

generator.The QHelpEngine operates on this file, as it contains

references to any number of .qch files.

void Generator::generateIndexFiles()

{

 ...

 QFile file(appPath + "/word.lst");

 if (file.open(QIODevice::ReadOnly)) {

 QTextStream stream(&file);

 while (!stream.atEnd()) {

 const QString& word = stream.readLine();

 QFile file(outputPath.path() + "/" + word +

 ".txt");

 if (file.open(QIODevice::WriteOnly)) {

 file.write(swap(word).toUtf8());

 filesList.append(QString("files/%1.txt").arg(word));

 }

 }

 }

}

QString Generator::swap(const QString& word)

{

 QString nc;

 for (int i = 0; i < word.length(); ++i)

 nc.append(hash.value(word.at(i).toLower()));

 return nc;

}

The other functions in this class are responsible for writing the con-

tents of the .qhp and .qhc files, as well as running the qcollection-

generator command line application.

Predicting with the Help Search Engine

With the .qhc and .qch files generated, we start the application

without any arguments. Each keypress will be cached and the re-

sulting keyword (i.e., the sequence of keypresses typed) is used to

issue a search query on the full text search.

Since we only require a simple search query,we will use the default

help search query. The string we pass on comprises of the follow-

4 Qt Quarterly

ing components: the number we are looking for, the number again

with two unknowns represented by ??, and finally the number ap-

pended by a tilde (~). The tilde provides a degree of uncertainty to

the number. To illustrate, suppose we are looking for the number

1234. Our search string will be 1234, 1234 + ??, and 1234 + ~. If

you look at the code, you will notice that these extra parameters are

escaped with the slash character.

void MainWindow::searchNext(const QString& num)

{

 current = 0;

 number += num;

 QList<QHelpSearchQuery> list;

 QString searchString(number + " OR " + number +

 "\?\? OR " + number + "/~");

 QHelpSearchQuery query(QHelpSearchQuery::DEFAULT,

 QStringList(searchString));

 searchEngine->search(list << query);

}

Once the query has been executed, the search engine will emit the

searchFinished() signal containing the number of search hits re-

turned. Now, all we need to do is pickup the first result and display

it. Since our search is file-based, the hits just contain the file path

for the word that was found. If the file is an HTML file, the search

hit will contain the page’s title, too.

We already mapped the file’s name to its numerical expression

and stored it in the file. So, now we just have to extract the file-

names to generate a plain list of words.

void MainWindow::searchFinished(int hitCount)

{

 const int numberLen = number.count();

 QList<QHelpSearchEngine::SearchHit> searchHits =

 searchEngine->hits(0, hitCount);

 QSet<QString> tmp;

 foreach (const QHelpSearchEngine::SearchHit& hit,

 searchHits) {

 const QString& path = hit.first;

 const int start = path.lastIndexOf("/") + 1;

 const int length = path.lastIndexOf(".txt") -

 start;

 tmp.insert(path.mid(start,

 (numberLen < length ? numberLen : length)));

 }

 hits = tmp.toList();

 updateDisplay();

}

We can iterate through the hits we obtained, using the NEXT and

PREVIOUS buttons. The CLEAR button resets the search hits

and clears the internal keyword buffer.

void MainWindow::updateDisplay()

{

 QString word;

 if (hits.count() > 0)

 word = hits.at(current);

 ui->lineEdit->setText(word);

}

Conclusion

We have seen that the new search engine of the Qt Help System is

not limited to searching through documentation. A requirement is

that the information can be stored in Qt Help files, though.

Karsten Heimrich is a Software Engineer at Nokia,

Qt Software in Berlin,Germany.He works on every-

thing related to Qt Assistant and the Qt Help Sys-

tem. In his spare time, he enjoys spending time with

his friends and colleagues.

The Qt Jambi Generator

With the abundance of programming languages existing

today, it is not unusual to provide the same set of APIs in

more than one language. The Qt framework, for instance, has

bindings to languages as diverse as Python, Ruby and Java.

The Java bindings, part of the Qt Jambi product, were created here

at Qt Software. Most of this process was automated by a porting

tool called the “Qt Jambi Generator”, which automatically gener-

ates bindings between Java and C++ types and functions. In this ar-

ticle, we would like to share some of the experienceswe have made

from porting a C++ API to Java.

The Challenge

When we port Qt to Java, we build Qt and then implement a lay-

er of code that communicates between Java and the native C++ li-

brary.This layer uses JNI, the Java Native Interface,which is speci-

ficially written to allow communication between Java and natively

compiled code.

In the porting process, the Qt Jambi Generator reads the public

header files from Qt and generates the following:

• A set of Java classes that map to the C++ API classes. These

classes contain Java methods that call corresponding C++ func-

tions using JNI, and a C++ void pointer (represented as a long

numerical value) which addresses a special book-keeping class

that contains necessary information about the binding between

the Java and C++ objects.

• Implementations of said JNI functions which route function

calls from Java into C++, and which, in the case of constructors,

create the C++ objects whenever a user of the API constructs the

corresponding Java object.

• Subclasses of all polymorphic types which route virtual C++

calls to their Java counterparts.

• Special QObject subclasses that route C++ signal emissions

to Java.

Despite their many similarities, the conceptual gap between Java

and C++ is large and, at times, unforgiving. For an undramatic ex-

ample of such a gap, consider the concept of implicit casts in C++.

In the Qt framework, implicit casts are used to make code shorter

and less verbose. In Java, however, implicit casts are non-existent.

For instance, take the following construction of a QPen object from

a QColor in C++:

QPen pen(QColor::fromRgb(255, 255, 255));

The QPen constructor actually takes QBrush as its argument, but the

QBrush object can be implicitly constructed from the QColor object

behind the scenes.Now consider the equivalent Java code in which

the C++ imeplicit casts are replaced with their Java explicit equiv-

alents.

QPen pen = new QPen(new QBrush(QColor.fromRgb(255, 255,

 255)));

While Java is naturally more verbose than C++, the extra step of

constructing the QBrush object here seems unintuitive and is not

how the designers of the API wanted it to look. The solution for

such a problem is to manually extend the automatically generat-

ed code by adding a handwritten overload to the QPen construc-

tor that takes a QColor object and creates the QBrush object behind

the scenes.

And this is precisely the challenge:bridging the gap between the

two languages while still retaining as much as possible of the orig-

inal intent of the API. If the direct port of the API is significantly

less convenient than its original, work needs to be done to provide

the same level of usability, even if this means providing something

Issue 29 Qt Quarterly5

that is no longer a word-for-word translation.

For instance, Java’s container classes and strings are nestled

deep in the language specification with special rules related to

them, and they even have their own keywords. In fact, these classes

cannot actually be implemented using Java. Directly mapping the

equivalent classes in Qt and using these in the API would be a di-

rect translation, but it would not add any value, and it would make

the resulting API much less convenient than both its original and

its potential. So the Qt Jambi Generator is written to recognize the

classes in question and, rather than port them, replace any mention

of them in the API with their Java counterparts.

Both the issues brought up so far are easily fixed and their so-

lutions are almost obvious. In the rest of this article, we will fo-

cus on more ominous differences in the mechanisms and ideals of

Java and C++. These are issues we discovered along the way, and

on some level forced us to take pauses and rethink earlier ideas, or

even make certain compromises to provide the best possible API

when the perfect solution to a problem just doesn’t exist.

Before we get into that, however, we will briefly describe Qt

Jambi’s type systems and how they can be used to add customiza-

tions to the generated code.

Type Systems

In addition to the C++ header files, the Qt Jambi Generator bases its

porting work on a set of XML files, collectively known as “the type

system”. These files contain information about the mapped classes

that cannot be inferred by the automated process. The most basic

of such information is whether a given class is to be considered a

value type or an object type.

Value types are typically passed by value from function to func-

tion, and, as a user, you would not expect side effects of any al-

terations made to a value type object. Take for instance a rectan-

gle class such as QRect and a setRect() method such as the one in

QGraphicsRectItem. If you initialize your rectangle and pass it to

the method, you would expect the method to make a copy of the

original and store the copy rather than a reference to your instance.

This means that if you alter the rectangle after it has been passed

to setRect() you would not expect the QGraphicsRectItem object

to change. This convention can be seen in Qt and also in other Java

frameworks such as Swing.

Object types, on the other hand, are usually passed by pointer,

and in fact the Qt Jambi Generator only supports passing object

types this way. Rather than represent a value which can be copied,

they represent a single, uniquely identifiable instance of a type. If a

property in a class is of an object type, you would expect its setter

to keep a reference to the original object, and that any subsequent

changes to the object would also affect the property referencing it.

Object types are often polymorphic types such as QObject, but can

also be non-polymorphic such as QPainter.

In addition to these basic rules, the type system also provides a

way for its user to customize several parts of the porting process

in cases where the automated process gives unwanted results. As

an example, you are able to inject handwritten code into gener-

ated classes and methods, and you can also customize the actual

type conversion code which is generated for a particular argument

of a particular function. This evolved quite organically. Required

features in the Qt Jambi Generator were added as the need arose,

which is why we usually state that it supports the subset of C++

used in Qt. In some cases where users have asked, we have expand-

ed on this, but we do not believe we will ever be able to support

every possible accent of C++.

Below is a small excerpt from one of the type system files used

when porting Qt to Java:

<object-type name="QAbstractTextDocumentLayout">

 <modify-function

 signature="setPaintDevice(QPaintDevice*)">

 <modify-argument index="1">

 <reference-count action="set"

 variable-name="__rcPaintDevice"/>

 </modify-argument>

 </modify-function>

 <modify-function

 signature="draw(QPainter*,QAbstractTextDocumentLayout::PaintContext)">

 <modify-argument index="1"

 invalidate-after-use="yes" />

 </modify-function>

 <modify-function

 signature="drawInlineObject(QPainter*,QRectF,QTextInlineObject,int,QTextFormat)">

 <modify-argument index="1"

 invalidate-after-use="yes" />

 </modify-function>

 </object-type>

For more information on the Qt Jambi type system, please refer to

the online documentation at http://doc.trolltech.com/.

Bridging the Gap

As mentioned, our main challenge in porting a C++ API to Java

was to provide the best possible mapping of the original API’s in-

tent despite the conceptual differences between the two languages.

We have selected a number of concepts that we considered particu-

larly challenging or interesting,and will now provide examplesand

descriptions of how these difficulties were solved for Qt Jambi in

the cases where they could in fact be solved.

Multiple inheritance

One of the most significant conceptual differences between Java

and C++ is the mechanism of multiple inheritance.C++ supports a

pure form of multiple inheritance,where any class can inherit from

a theoretically unlimited number of other classes.There are certain

pitfalls related to this practice (e.g., the diamond problem),but C++

provides its user with a set of tools to work around the obstacles

and expects the programmer to use these tools to write correct and

safe code.

When Java was designed, multiple inheritance was deemed too

complicated for a language aiming to become “simple, object ori-

ented, and familiar”. Instead, a special case of the mechanism was

implemented: the ability to multiple inherit completely abstract

classes known as interfaces.The interface design pattern covers an

arguably clean and unambiguous usage area for multiple inheri-

tance, and is in fact how multiple inheritance is mostly used in the

Qt framework.

An example of this is the QPaintDevice interface which is im-

plemented by both QWidget and QPrinter. In Qt, painting code can

easily be generalized to work on both printers and widgets on the

screen simultaneously, as it deals with paint devices and not with

the classes directly.The QPaintDevice class is an abstract class with

no superclass that contains some pure virtual functions, and also a

few convenience functions that have actual implementations.

The general mapping of multiple inheritance into Java is to use

the interface mechanism. The type system is expected to provide

information about which types are used as interfaces in the API,

and when code is generated for these classes, the Generator will

create both a Java interface with all method declarations, and also

a regular Java class which inherits the interface and which contains

any method implementations that may reside in the C++ version of

the interface. Whenever a class in the C++ hierarchy inherits from

the interface, this class will also get a copy of these implementa-

tions in Java.

http://doc.trolltech.com/

6 Qt Quarterly

Whenever a Java instance of a Qt Jambi class is passed into a

C++ function, we need to convert it into a C++ object. As men-

tioned, the Java object itself contains an untyped pointer to the cor-

responding C++ object, and this needs to be cast into the correct

type before passing it into the target function. The caveat is this:

whenever this conversion happens for an interface type, we will

need to know how to cast it to the correct subobject in C++, or it

will not be possible for us to pass the correct pointer value into the

corresponding C++ function. This requires knowing the full struc-

ture of the object in C++.We have to know which classes it is typed

with and in what order. In Qt Jambi, this is done using a special

method in the Java interface that we guarantee will always return

the correct C++ pointer for the object and interface type.

The consequence of this, of course, is that it is impossible for a

user of the generated API to make his or her own implementations

of the interface, as they will have no way of implementing such a

method. Unfortunately, that’s an unsolvable inconvenience in the

generated API, as we need to be able to statically construct a C++

instance that corresponds to any Java instance that the user of the

API creates, and there is such a high number of combinations of

superclasses and interfaces to consider that covering them all could

be viewed as effectively impossible.

When using Qt Jambi, you will rather subclass the main imple-

mentation of an interface and not have the convenience of the in-

terfaces in your own code.

Pointers and Arrays

Where C++ has pointers to objects, Java has references. For many

purposes, the two are semantically and conceptually identical, but

pointers have a greater range of use cases which are not supported

by Java references. In particular, when given a pointer to a location

in memory in C++, there is no way to programmatically determine

whether it points to a single instance of its type, or to an array of

instances. The person writing the API will need to communicate

the contract to the person using the API, either by adhering to a

specific convention or by documenting the intended usage.

In Qt, pointers to object types are by convention always consid-

ered a pointer to a single instance of the type. In order to provide an

array of object type instances, one would use double indirection in

the API. In the Qt Jambi Generator, pointers to instances of object

types will always be handled as pointers to single instances.

Whenever a pointer to a value type instance occurs in the API,

the usage will most likely be documented, unless it is apparent

from the function signature how it is intended to be used. Consider

the following C++ function:

void readData(char *buffer, int bufferSize);

This is not at all an uncommon usage of pointers, so we wanted to

find a general solution for such cases that would provide a match

for the API in all instances. This meant making an API for both

creating, reading and manipulating C++ pointers that references

an arbitrary number of instances of a given type. The class QNa-

tivePointer was written for this purpose, and any API that uses a

pointer to a value type in C++ will be replaced by QNativePointer

in Java.

public void readData(QNativePointer buffer,

 int bufferSize);

The QNativePointer class provides us with a similar power as the

original API in C++, but also imposes on us the same amount of

responsibility.As a result, it is equally easy (or perhaps even easier)

to mess up and have your application crash when using this class

than when dealing with pointers. Since it introduces a potential

instability that is unheard of in Java, we decided early on that we

would like to minimize its usage as much as possible. This is done

by manually overriding the generated code in the type system. As

humans, we can read the documentation and handwrite code which

provides the same level of convenience to Java users of the API,

for example by using Java arrays in place of the C++ arrays.

Templates and Generic Classes

In Java 5, a mechanism for generic programming was introduced.

The syntax chosen is similar to that of templates in C++, but as

generic mechanisms go, the two reside in completely different ball-

parks. Templates in C++ are implemented in a so-called heteroge-

neous way, meaning that the code is only partially compiled prior

to parameterization. The code referencing the generic type is left

unevaluated until the type is replaced by an actual type, and the

mechanism is powerful and highly optimizable for speed.

In Java, a homogeneous approach was selected instead, meaning

that the generic code is compiled before the instantiation happens.

This provides greater optimizability for space, and, perhaps most

importantly, statically verifiable generic code.

Since there is no way of dynamically parameterizing a C++ tem-

plate, there is no general way of mapping a generic API from C++

to Java. Thankfully, such API is uncommon in the Qt framework

and mostly constrained to container classes which, as has been

mentioned, are not ported by the Generator.

The requirement for template support in Qt Jambi first arose

when we set out to port QtConcurrent, and it turns out that there

exists a special case of templates which could be supported in

a general way: whenever the generic code makes absolutely no

assumptions about its argument type, and thus can be completely

compiled without specialization. This would, for instance, be the

case for a generic container written to store objects of any type. In

such cases, the Qt Jambi Generator provides some tools to help its

user map the equivalent API to Java.

Since an unbounded generic parameter in Java becomes the

common superclass java.lang.Object when the code is compiled,

we simply needed to add generic syntax to the Java class, and then

expect the Object class in our JNI code. The template can in turn

be instantiated with the special type, JObjectWrapper, which is the

binding type corresponding to Object.

Memory Management

Another large conceptual difference between Java and C++ is

how memory is managed. Java has implicit memory management,

meaning that objects are subject to garbage collection and poten-

tially removed by the runtime when there are no longer any refer-

ences to them. In C++, memory management is explicit, meaning

that the programmer must know how many references there are to

a particular piece of memory and manually deallocate the memory

once it is no longer needed.

In Qt Jambi,we wanted programmers to be able to depend on the

same memory management conditions as they do when using regu-

lar Java classes.This is a very hard problem, however, as there real-

ly isn’t any way of counting the C++ references to a given object.

The risk is that an object is garbage collected while still being

used by C++ code, causing dangling pointers and, subsequently,

crashes. Under certain conditions, we also cannot know when the

object has been deleted by a C++ statement. Specifically, we can

detect the deletion of a C++ object if it is a QObject (we are told

when the object is destroyed) or when it is created in Java and its

class has a virtual destructor (we get a call to our generated reim-

plemented destructor). In other cases, we risk having dangling

pointers in our binding layer if C++ deletes an object and we still

have Java references to it.

Issue 29 Qt Quarterly7

Our solution to this is to assume ownership contracts for any Qt

Jambi object and make sure that we change this contract whenever

the rules of ownership are changed by a function call.

By default, any object created in Java will be owned by Java

and can therefore be deleted by Java’s garbage collector. Objects

created in C++ and converted into Java will have so-called split

ownership,meaning that Java is allowed to garbage collect the Java

object but must leave the C++ object alone.

In addition to these two contracts, there is also C++ ownership,

which prohibits the garbage collector from interfering until the

C++ object has been deleted. Once this happens, the Java object is

released and can be collected.

Keeping the ownership contracts valid has to be done manually

in the type system. Whenever a function assumes ownership of an

object, we need to set a special attribute for the function, causing

the Generator to produce code that changes the object’s owner to

C++. In cases where the function does not assume ownership, but

does retain a pointer to the object, we also need to identify this in

the type system, and have the Generator produce code that retains

references to the Java object for as long as the C++ code is using

its pointer.

There is no way of automating this, as the process requires a

complex understanding of the underlying code. It is, however, the

same potential problem that must be considered by a C++ user

of the API, so well-formed APIs will most likely have a clear and

documented policy on how this is handled.

A second potential problem related to memory management

occurs when functions are called the other way around; i.e., when

C++ calls a virtual function which is reimplemented in Java. Con-

sider the case of a virtual function called paint() which takes a

pointer to a QPainter object. The implicit contract is that the im-

plementor of paint() should use the painter object to issue draw

commands, but that once the pointer goes out of scope, there are

no guarantees concerning the lifetime of the object.Hence, the pro-

grammer should not retain any reference to the object, lest he may

experience crashes when accessing it later. This of course also ap-

plies when the reimplementation is in Java.

private QPainter painter;

@Override

public void paint(QPainter painter)

{

 this.painter = painter; // Uh-oh

}

In Java, we would like to avoid crashing the application whenever

it’s possible, as hard crashes make it difficult for Java programmers

to debug their code. Therefore, we try to identify code which im-

plies this contract, so that we can detach the Java objects from their

C++ counterparts once a virtual call has ended. This means that if

you do write code like the one above and subsequently try to access

the painter object, we can easily detect that the object has been de-

tached and throw an exception, which is much easier to debug.

Types and Identities of Objects

As we have seen, objects are frequently passed back and forth over

the language barrier. In such cases our binding layer will need to

take the object from the source language and magically turn it into

an object in the target language. We would like these two objects

to correspond as much as possible.

One such case is when the binding layer is asked to pass a Java

object over to a C++ function.Finding a corresponding C++ object

to the Java object is easy. We control the Java object completely,

and as mentioned we can store the C++ pointer inside. When the

conversion is taking place, we can simply retrieve the pointer and

cast it to the correct type.

When the emigration is in the opposite direction, though, it’s

not so trivial. When the binding layer gets an arbitrary C++ pointer

and is asked to convert it to a Java object, there are three cases

to consider:

1. The object was created in Java.

2. The object was created in C++ and it is the first time it has

been converted.

3. The C++ object has also been created in C++, but it has been

converted to Java before.

When the object was created in Java, a Java object corresponding

to it already exists. In this case we would obviously like to convert

the pointer into this specific Java object. In the second case, the

binding layer will have to construct a new Java object of the correct

type which has bindings to the C++ object. In the third case and in

an ideal world, we would like to convert the same C++ pointer into

the same Java object every time. This is where it gets tricky, and

while I hate being the bearer of bad news, our world turns out to be

somewhat non-ideal.

Consider the virtual paint() method from the previous section.

In the C++ code for the library we are porting, there is a call to this

function from a handler for the paint event:

void MyWidget::paintEvent(QEvent *)

{

 QPainter p(this);

 paint(&p);

}

Now imagine that the paint() function is reimplemented in Java.

We would like the call to paint() to be transmitted into Java and

the QPainter object to be converted into a Java object and then

passed into the reimplementation of the function. In any call to

paintEvent() the object,p, will be allocated on the stack,very likely

in the same location in memory every time. Hence, it’s likely that

the pointer to p will be equal with every subsequent call to paint()

even though the object itself is different. From the binding layer’s

perspective, there is no way of detecting whether the pointer we are

seeing is a pointer to the same object as last time, or a pointer to a

new object in the same location.Thus we cannot in general guaran-

tee that there is always a one-to-one relationship between a C++ ob-

ject and its corresponding Java object. The consequence of this in

Qt Jambi is that you cannot always rely on the identity comparison

operator for comparing two objects. Luckily, as we will see, this is

only relevant for some rare cases in Qt.

In most cases we can support this relationship. Specifically, we

can support it whenever we can detect whether the C++ object has

been deleted. This is true when its type is a QObject, it has a virtual

destructor and is constructed by Java code, or is owned by Java as

described in a previous section. The case of QObject is specially

handled using the object’s user data, and if the object is not a

QObject, we maintain an internal cache of pointers that we can use

to look up the corresponding Java object, which is updated when

we see that the object has been destroyed.

In other cases, we need to construct a new Java object every time

we want to pass a C++ object over the language barrier. Whenever

the binding layer needs to construct a Java object, another tricky

question poses itself: how do we know which class to construct for

our new Java object? The statically generated code only knows the

type in the signature of the function it is calling, but in the case of

polymorphic types, for instance, it is their very nature to be passed

into functions expecting a supertype instead, and thus the type in

the signature may not be specific enough to fully represent the C++

object in question.

Take QEvent as an example. The general event handler, event(),

8 Qt Quarterly

will receive objects of subclasses of QEvent that are identified by a

type property. The subclasses may contain data which is particular

to the specific type, and we may want to cast the object into its

actual class to access this data.

public boolean event(QEvent event)

{

 if (event instanceof QMouseEvent) {

 QMouseEvent mouseEvent = (QMouseEvent) event;

 System.err.println("Please stop hitting the"

 + "following button: "

 + mouseEvent.button());

 }

 return false;

}

In this Java code, we are using the instanceof operator and a type

cast with an event to first check if it is of the QMouseEvent type, and

then, if it is, access the data particular to QMouseEvent.

When the Qt Jambi Generator produces code that converts the

event object from C++ to Java, and it has to construct a new Java

object to make the conversion, all it knows about the source is that

it is of a subclass of QEvent. In order for it to construct the correct

subclass, we need to provide the Generator with information on

how to determine the actual type. This is also done manually in the

type system. In the case of QEvent we will instruct the Generator to

produce code that calls the type() function in the event object and

creates a Java object with the class corresponding to the type. In

cases where the correct type cannot be found (the object may be of

an internal subclass which is not mapped in the type system) then

the general supertype QEvent is used instead.

Enums and Extensibility

The final topic we will cover is the case of porting enums from C++

to Java. In C++, an enum is a type consisting of a set of named inte-

ger values.This is useful for making type-safe enumerated types or

flags. In Java, an enum is also a list of named constants, but there’s

no value related to the enum constants other than their ordinal val-

ue. Rather than being castable to a plain old integer like in C++,

they are actual objects, and the enum type is a class type which has

been special-cased to be used in relation with the switch keyword

and which can never be instantiated at run-time. That means that

Java enums are not strictly designed to be used as flags, or as iden-

tifiers for values.

To work around these limitations, the Qt Jambi Generator takes

advantage of the fact that the enum is a class and adds a value()

method to it. The enum constants are then statically constructed

with their value set to the same as the integer value of the corre-

sponding enum constants in C++. This is then the value used to

convert the enum back and forth between Java and C++, and it

can be used in place of casting the enum to an integer. The value()

method is also used when enum types are made the basis for a flags

type, which is a pattern borrowed from the C++ version of Qt.

Another concept made easy in C++ by the fact that enum con-

stants are represented as integers is extensible enums. The concept

is used regularly in Qt, specificially to allow extending of types

such as QEvent with custom subclasses, and giving these their own

Type enum constants for identification. In such enum types, there

will be some sort of User constant which represents the base of all

custom types, and new enums can be constructed by incrementing

this and casting the result to the enum type:

QEvent::Type type1 = QEvent::Type(QEvent::User + 1);

QEvent::Type type2 = QEvent::Type(QEvent::User + 2);

As was mentioned above, Java’s enums do not support construction

at run-time, because the very reason for having enums in the lan-

guage is to have an enumerated type which is statically type safe,

something which is no longer true once you make dynamic exten-

sions to the type. In our specific cases, the code is written to inter-

pret the enum type in a more lenient manner, so we needed to be

able to construct new objects of certain enum types at run-time.

All enum types in Java automatically become subclasses of

the Enum class, and this class does in fact have a constructor, but it

cannot be accessed from user code. In order to work around this,

we bypass the accessibility check by constructing the object in the

unpoliced environment of JNI. In order to guarantee the identity of

enum constants, we also cache each constructed enum constant so

that it can be retrieved directly later on.

The C++ code above can be written in Java as follows:

QEvent.Type type1 = QEvent.Type.

 resolve(QEvent.Type.User.value() + 1);

QEvent.Type type2 = QEvent.Type.

 resolve(QEvent.Type.User.value() + 2);

The resolve() method will then check if the given value already

corresponds to an enum constant, either one created statically

or one created dynamically. If it doesn’t, it will construct a new

constant in JNI and add it to its cache.

Conclusion

Though producing a completely automatic port of an API to a dif-

ferent language might be viable by always accepting the greatest

common divisor as “good enough”, the intent of the API will quite

possibly not be intact in the resulting, generated code.

For Qt Jambi, our main goal was to expose the ideas of Qt to

Java programmers, not just the names of classes and functions.

Doing this required manual intervention in many, many cases,

and still requires manual intervention whenever new API is added

to Qt.

On the other hand, we also wanted the Qt Jambi Generator to

produce usable code out-of-the-box, so that a user could quickly

reach a point of actually having compilable Java classes to test.

In the end, the way we structured our work was usually to try to

solve a complex issue in a general and automatable way at first, and

then consider whether the resulting API required manual tweaking

only when we had something which could already be considered

as working.

Eskil Abrahamsen Blomfeldt is a software engi-

neer at Nokia, Qt Software in Oslo, Norway. He’s

one of the main architects of Qt Jambi and cur-

rently spends his time working on state machines

and graphics.

Qt Quarterly is published by Nokia Corporation, Oslo, Norway.

Copyright 2009 by Nokia Corporation or original authors.

Authors: Eskil Abrahamsen Blomfeldt, Karsten Heimrich, Geir

Vattekar.

Contributors: Alexandra Leisse, Kavindra Devi Palaraja.

Production: Katherine Barrios.

Editors: David Boddie, Geir Vattekar.

A selection of Qt Quarterly’s articles and source code is avail-

able from http://doc.trolltech.com/qq/. Potential contributors

should contact the editors at qt.comments@nokia.com.

No part of this newsletter may be reproduced, in any form or by any

means, without permission in writing from the copyright holder.

Nokia, Qt and their respective logos are trademarks of Nokia Corpo-

ration in Finland and/or other countries worldwide. All other prod-

ucts named are trademarks of their respective owners. Produced in

Norway.

Issue 29 Qt Quarterly9

Qt News

New Wiki on Qt Centre

Qt Centre,one of the largest Qt Community sites on the Web,keeps

a Wiki containing examples, guides, and information about config-

uration and installation. It contains in-depth articles about Qt class-

es and concepts, in the form of tutorials and how-tos, complement-

ing Qt’s official documentation.

Qt Centre also has a FAQ with the common questions, ranging in

complexity from, “Why don’t my signals and slots work?” to how

to cope with build issues for the MySQL integration.

The Wiki currently contains about 150 pages, and will likely

grow steadily in the future. It is worth a look and is found here:

http://wiki.qtcentre.org.

Qt Jambi to Become Community Project

With the Qt 4.5 release, Qt Software announced that it will discon-

tinue internal development of features for Qt Jambi, handing over

the future development of the technology to interested Qt and Java

developers. The last Qt Software-driven Qt Jambi release will be

built against the Qt 4.5 libraries.

Qt Software will support and maintain Jambi for one year after

the 4.5.0_01 release; releases of Qt Jambi will be available for

download under the LGPL license. The Qt Jambi Generator, the

tool that automatesmuch of the porting process,will likewise be up

for grabs. The developers of Qt Jambi hope that, as well as taking

Qt Jambi forward, interested parties in the community will pick up

the generator and have some fun with it—perhaps helping with the

effort to keep the Qt dream alive for Java users.

KDE Reaches Milestone with “The Answer”

On 27 January, KDE reached another milestone with the release of

version 4.2 (“The Answer”) of the popular desktop and develop-

ment platform. With this release, the community has provided the

first implementation of the new technologies ready for end users.

Various applications made a huge leap forward in stability and us-

ability and scripting support for Plasma has seen large improve-

ment. Technology previews of KDE applications are available for

both Windows and Mac OS X.

Right after the release of Qt 4.5, on 4 March, KDE also made

their libraries available under the LGPL license along with the

4.2.1 maintenance release.

http://kde.org/announcements/announce-4.2.1.php

New version of Qt Kinetic on Labs

A new preview of the Qt Kinetic project is now available on Qt

Labs. Kinetic’s main focus is the creation of a new animation

framework, enabling declarative UI design and styling. It aims to

make it easier to make dynamic, animated and smooth GUIs. Be-

hind the scenes, the kinetic project also houses a state machine,

which powers the animation framework. The machine can also be

used for other purposes.

Kinetic can be tested by cloning its git reposito-

ry git://labs.trolltech.com/qt/kinetic. There are examples in

the repository located under examples/animation and exam-

ples/statemachine.

The project page for Qt Kinetic can be found here:

http://labs.trolltech.com/page/Projects/Graphics/Kinetic.

Qt Extended Migrates into the Qt Framework

On 3March,Qt Software announced that Qt Extended will cease to

exist as a standalone product. Selected features will be transferred

into the Qt framework—making Qt an even richer cross-platform

application framework.

The final release of Qt Extended will be version 4.4.3. Qt Soft-

ware will honor all existing support agreements, and for customers

who need continued access to support beyond the term of their cur-

rent agreement, Qt Software is offering the possibility of purchas-

ing supplemental support.

Winners of Pimp My Widgets

Winners of the Pimp My Widgets de-

veloper contest have been found. In

the contest Qt developers “pimped”

widgets and simple applications from

several categories for a chance to win

the grand prize of a Segway i2 Per-

sonal Transporter, or one of three

Nokia N810 Internet Tablets.

Entries were judged based on five criteria:

• Best Use of Qt

• Usefulness

• Coding Creativity

• Portability

• Bling Factor

Developers from all around the word sent in all kinds of pimped

out widgets, and the competition was fierce. In the end, the win-

ner turned out to be Jukka-Pekka Maakelaa with his QuickCalen-

darView. This intuitive widget provides three ways to determine

visible timespan, toggles quickly between day and month view,and

provides intuitive ways to view information on appointments.

You can read more about the competition on its web pages. Here

you can also download the QuickCalendarView widget, and also the

widgets of the three runners up. The web page is found here:

http://www.qtsoftware.com/developer/pimp-my-widgets-developer-contest

Qt @ Nokia Developer Summit

28–29 April 2009, Monaco

Join the first annual Nokia Developer Summit and make new con-

nections, learn new skills and develop new ideas to create tomor-

row’s technologies. Qt experts will be presenting their ideas on

how Qt can help you develop a mobile application that gives a truly

compelling user experience. In addition, our Qt experts will high-

light the power of the Qt cross-platform strategy and how easy it is

to take your desktop application to the mobile environment.

Presentations at the event include “Nokia Keynote: Power of

cross platform development using Qt” by Benoit Schillings, Chief

Technologist at Qt Software, “Qt on Nokia platforms (S60 and

maemo)” by Mika Rytkönen, Director, Program Management,

Nokia, and “Qt overview – Enabling cross platform app develop-

ment from desktop to mobile Nokia”.

To register for the Nokia Developer Summit, please visit:

http://www.developersummit2009.com/

Contact address: Nokia Norge AS, Sandakerveien 116, P.O. Box 4332, Nydalen, NO-0402 Oslo, Norway

http://wiki.qtcentre.org
http://kde.org/announcements/announce-4.2.1.php
git://labs.trolltech.com/qt/kinetic
http://labs.trolltech.com/page/Projects/Graphics/Kinetic
http://www.qtsoftware.com/developer/pimp-my-widgets-developer-contest
http://www.developersummit2009.com/

