) Qt Quarterly

C++and Qt Programmers' Newsletter

Pimp My Widgets Developer Contest..................... 1
Writing ODF FileswithQt.........ccoviiiiiiin.... 1
Keepingthe GUIReSpONSiveccvvvvviiiiinnnnnnn.. 3
The PanelStack Patternccovviiiiiiin ... 6
Poppler: Displaying PDF FileswithQt 9
QENEWS et e e e e e 12

Qt Developer Days, Munich - 14 October 2008 - Do you
break out into a rash when you see an ugly user interface?
Does adding style, animation, functionality and bling to
applications large and small make you grin? Then the “Pimp
My Widgets” Developer Contest is for you!

Qt Software is kickin’ out a new de-
veloper contest, throwin’ down a
challengetothe Qt community of de-
velopersto createinnovative, attrac-
tive and functionaland blingin’ wid-
gets using Qt across all supported
platforms.

Qt developers are able to “pimp”

widgets and simple applications
categories for a chance to win

from several
the grand prize of a Segway® i2 Personal Transporter,
or one of three Nokia N810 Internet Tablets. A call for
entries was issued this morning via a YouTube Video,
http://www.youtube.com/watch?v=p2pXXAVkhW8, and devel-
opers are encouraged to submit videos of their projects in
response.

Submission deadline: 31 December 2008
More information, including guidelines, categories and judging
criteria can be found at http://trolltech.com/pimpmywidgets

Technology Preview release of Qt 4.5

Qt 4.5 brings a ton of new features aimed at achieving our
three main design goals for the release:

1. To improve the runtime performance of Qt-based appli-
cations.

2. To upgrade our Qt Webkit Integration to allow you to
realize the full potentialof the best browser engine onthe
market in your Qt applications.

3. To future proof your investment on the Mac platform by
adding 64-bit support.

Preview packages are available now on our Website for
download—try out the new features for yourself, and tell
us what you think! For more information, please visit the Qt
Developer Zone:

http://www.trolltech.com/developer/preview-qt-4.5

Issue 27 - Q3 2008

The upcoming release of Qt 4.5 marks the appearance of
the QTextDocumentWriter class, making it possible to create
OpenDocument Format (ODF) files from any Qt text document.
This opens the door to automated document creation and
distribution in a standards-compliant format that users can
openinawide variety of word processors.

A prime use case for automated document creation is report
generation. An example of this is a store that performs periodic
inventory checks and, thus, needs to know if what the database
thinks is on the shelves actually reflects real life. Consider some
software that takes the database records and creates a readable
document for one day’s worth of work. That document can then
be exported to ODF and sent to the person who does the work.

o phonebill - OpenOfiice.org Writer
Ele Edit View Insert Format Table Iools Window Help
S-@ED > e DD

=D [pefault ~) [sans ~) [20

X col . 2 . 3 . a co5 . 6t A

Ph;)ne l;ill fo;' Tho;'nas Zandér

ate Duration (sec) Cost
Wed Apr 2 04:15:14 2008 932 €233
- Thu Apr 3 06:14:36 2008 325 €0.81
Sat Apr 517:13:18 2008 704 €1.76
Tue Apr 8 06:32:18 2008 708 €177
Wed Apr § 11:52:58 2008 1678 €4.19
Sat Apr 12 03:33:43 2008 301 €0.75
& Sat Apr 12 16:16:21 2008 1905 €4.76
Tue Apr 15 01:06:01 2008 1958 €4.89
Thu Apr 17 05:06:58 2008 1600 €4.00
Thu Apr 17 10:35:07 2008 56 €0.14

- Your past usage:

April
March

Septembe
Novembe|
Decembe

February

BODaOD

<
Page1/1 Default Multiple Languages | 100% |INSRT | STD

Inthisarticlewewillwriteasimplereport generatorinthe formof
aphone bill creator. We will create one class, the PhoneBilliuriter,
torepresent the phonebillfor one client,andyou canmodify it or
use it as a starting point for your own reporting needs.

Getting Started

The PhoneBillwriter class has the following definition:

class PhoneBillWriter
{
public:
PhoneBillWriter(const QString &client);
~PhoneBillWriter();
struct PhoneCall {
QDateTime date;
int duration; // in seconds
int cost; // in euro-cents
i
void addPhoneCall(const PhoneCall &call);
void addGraph(QList<int> values,
const QString &subtext);
void write(const QString &fileName);
private:
QTextDocument * const m_document;
QTextCursor m_cursor;

}i

http://www.youtube.com/watch?v=p2pXXAVkhW8
http://trolltech.com/pimpmywidgets
http://www.trolltech.com/developer/preview-qt-4.5

This allows us to create one phoneBillwriter for each bill and fill
it with data, using calls to the addrhonecall () method. After we
have added all our data we call the write() method to finish the
current bill. Thisis a classic case of using the builder pattern.

Internally, the class uses a QTextDocument as can be seenin the
list of private members. The QTextDocument classis usedina lot of
placesin Qt and its widgets. QTextEdit uses one and you can ac-
cess it using the QTextEdit: :document () method. The QTextDocu-
ment is a text document with the ability to contain structuredtext
as wellas markup (bold and italic) and much more. See Qt’s Text
Edit demo for an overview.

The class @Textcursor is provided to allow the content of a text
document to be manipulated. This is very much in the spirit of
having a blinking cursor on your word processor and having the
ability to move the cursor aroundandinsert text. The QTextCursor
class gives us the ability to do all this programatically.

Writing the Bill

The approach used in this report writer is to create a QTextDocu-
ment in the constructor and add the header and nice formatting
informationthat willbe the samefor eachphonebill.Here’sasim-
ple implementation:

PhoneBillWriter::PhoneBillWriter(const QString &client)

: m_document (new QTextDocument()),
m_cursor (m_document)

m_cursor.insertText (QObject::tr(
"Phone bill for %1\n").arg(client));

QTextTableFormat tableFormat;
tableFormat.setCellPadding(5);
tableFormat.setHeaderRowCount (1) ;
tableFormat.setBorderStyle(

QTextFrameFormat: :BorderStyle_Solid);
tableFormat.setWidth(QTextLength(

QTextLength::PercentageLength, 100));
m_cursor.insertTable(l, 3, tableFormat);
m_cursor.insertText (QObject::tr("Date"));
m_cursor.movePosition(QTextCursor::NextCell);
m_cursor.insertText (QObject::tr("Duration (sec)"));
m_cursor.movePosition(QTextCursor::NextCell);
m_cursor.insertText (QObject::tr("Cost"));

}

PhoneBillWriter::~PhoneBillWriter()
{

delete m_document;
}
We start by adding a personal note and follow this with a table
and the table header, which we fill them with the header labels.
We don’t need to specify in advance how many rows there arein
the table.

The interesting bits are the m_cursor usage, which includes
call to methods like insertTable() and insertText() to actually
modify the document.

Thegrextcursor alsounderstandsthe conceptsof selectingand
removing text. A very powerful method on the cursor is movepo-
sition(), to which you can pass one of the many values from its
MoveOperationenum. Thismakesthe classreally behave likeacur-
sorsinceallthe usualnavigationoperationsare there.Inthis case
we use a navigation operation that's new in Qt 4.5: the Nextcell
operation moves the cursor to the start of the next table cell. As
aresult, the text passedto the following insertText () callwillend
up at the start of the table cell.

After setting up the header of the document we are ready to
add actual user information to it. The caller can add individual
phone calls using the addphonecall() method, passing in the
individualfields that we show in the table.

void PhoneBillWriter::addPhoneCall(
const PhoneBillWriter::PhoneCall &call
{
QTextTable *table = m_cursor.currentTable();
table->appendRows (1) ;
m_cursor.movePosition(QTextCursor::PreviousRow) ;
m_cursor.movePosition(QTextCursor: :NextCell);
m_cursor.insertText(call.date.toString());
m_cursor.movePosition(QTextCursor::NextCell);
m_cursor.insertText (QString: :number(call.duration));
m_cursor.movePosition(QTextCursor::NextCell);

QChar euro(0x20ac);
m_cursor.insertText (QString("%1 %2").arg(euro)
.arg(call.cost / (double) 100, 0, "f', 2));

}

To show the phone call later, we add a row to our table and then
continue to add the text to the document for each of the table
cells.We calltheappropriate gstring methodsto convert theinte-
ger datainto text so we can fine-tune the way our datais shown.
After all, the goalin our example is to make a pretty looking ver-
sion of the raw data, and properly formatted text is the way to
get there.

Having just text, even with tables, makes for boring reading.
Adding graphs or other picturesis always a good way to make a
document much more readable. This document talks about cre-
atinganODFdocument,andthe OpenDocumentFormatallowsus
to embedimagesinto the finalfile, unlike HTML, for example.

Inorder to get the document into the final ODF file all we need
to do is insert the image into the QTextbocument. It will not be a
big surprise to learn that there is a QTextCursor: : insertImage()
method to do exactly this.

For our example document, we wanted to add a graph to show
the amount of calls the client made in the last few months. For
this the following code was used:

QList<int> callsPerMonth;
callsPerMonth << 6 << 84 << 76 <<) << 93 << 128 << 76
<< 31 << 19 << 4 << 12 << 8;

phoneBill.addGraph(callsPerMonth, "Your past usage:");

To actually create the graph, our solutionis to create a QImage, use
a Qrainter to draw the values onto it, and then insert the image
into the document at the right location.

void PhoneBillWriter::addGraph(QList<int> values, const
QString &subtext)
{
const int columnSize = 10;
int width = values.count() * columnSize;
int max = 0;
foreach (int x, values)
max = gMax(max, x);
QImage image(width, 100, QImage::Format_Mono);
QPainter painter(&image);
painter.fillRect (0, 0, image.width(), image.height()
Qt::white); // background
for (int index = 0; index < values.count(); ++index) {
// Adjust scale to our 100 pixel tall image:
int height = values([index] * 100 / max;
painter.fillRect(index * columnSize,
image.height() - height, columnSize, height,
Qt::black);
}

painter.end();

QTextCursor cursor(m_document);
cursor.movePosition(QTextCursor::End);
cursor.insertText (subtext);
cursor.insertBlock();
cursor.insertImage(image);

}

First, we calculate the required width of our graph based on the
amount of values passedin. We choose to always have a height

of 100 pixels and scale the values to fit in that range since most
graphs are designed to show the relative sizes of the values to
each other.

We use a monochrome format for the image, which means
only two colors. You can use any image format you want for ODF,
though. Two colors just seems enough for this use case.

After creation of the actual image we create a new QTextCur-
sor and move it to the end of the document, where we insert the
graph. An important note is that this cursor has a position that
may be different from the m_cursor object. The reason for creat-
ing a new cursor here is to make sure the user can still call ad-
dphonecall () after the addcraph() call without affecting the posi-
tioning of the textual content.

The last part of our PhoneBilluriter class is to actually create
the OpenDocument Format file from all the information we put
into the writer object. The hard work is all done by the gTextDoc-
umentiiriter class, which is capable of writing to various formats,
like plain text, HTML and ODF. The default is ODF, making the im-
plementation trivial for us:

void PhoneBillWriter::write(const QString &fileName)
{
QTextDocumentWriter writer(fileName);
writer.write(m_document);

}

a phonebill - OpenOffice. org Writer
Eile Edit View Insert Format Table Iools Window Help

CRFL PILEE RIS o Y
= [polan] [Nimbus RomanNos L [<] [|+] B) 1] U

T R 12+ 8 4 5 G 7§+ 9 A0 A1 1

Phone bill for Thomas Zander

Date Duration (sec) GCost
Wed Apr 2 10:54:38 2008 61 €0.15
Sat Apr 5 05:45:11 2008 353 €088
Mon Apr 7 03:16:08 2008 1937 €484
Tue Apr 8 14:41:06 2008 1382 €345
Thu Apr 10 19:38:44 2008 1305 €3.26
Sun Apr 13 00:50:15 2008 30 €0.07
Mon Apr 14 18:32:35 2008 1282 €3.20
Thu Apr 17 10:30:31 2008 300 €075
Sun Apr 20 07:56:59 2008 1976 €4.94
Mon Apr 21 13:40:27 2008 1142 €285
Your pastusage:

Ik

Page 1 /1 Default

100% [INSRT | STD

The aboveimage shows the finaldocument in OpenOffice.org.As
itstands,it’'sintentionallysimplefordemonstrationpurposes,but
there’saslightlymoredecorativeexampleincludedalongsideitin
the archive available from the Ot Quarterly Web site.

Drawing Conclusions

The example we have presentedis fairly simple andis focused on
showingthe basic ODF writing capabilitiesof QTextDocumentiriter
rather than making the output look as pretty as possible.

Qt has plenty of features that we can use to improve the ap-
pearance of the phone billand usefulness of the writer. For exam-
ple, we could use the Qt SQL module to extract real information
fromanexistingdatabase and use gpainter to draw more visually
appealinggraphs and charts.

We could also create a nice frontend application to help the
user create reports, or use Qt's ODF capabilities to do something
completely unrelated to phone bill, reports or accounting. What
you create with this new feature is up to you!

Thomas Zander is a Software Engineer at Nokia,
Qt Software in 0slo, Norway where he works on
everything related to text. In his spare time, when
not working on KOffice, he enjoys spending time in
the Norwegian countryside.

At QtCentre people come to us with the recurring problem of
their GUIs freezing during long operations. The issue is not
difficult to overcome but you can do it in many different ways,
so I'd like to present a range of possible options that can be
used depending on the situationyou are dealing with.

Performing Long Operations

Thefirstthingtodoistostatethedomainof the problemandout-
line paths that canbe takento solve it. The aforementioned prob-
lem can take one of two forms. The first variationis when a pro-
gramhas to execute a calculation-intensive task that is described
asaseries of operations to be performedin sequence in order to
obtain the final result. An example of such a task is calculating a
Fast Fourier Transform.

The second variation is when a program has to trigger some
activity (for instance a network download) and wait for it to be
completed before continuing to the next step of the algorithm.
Thisvariationof the problemis, initself, easy to avoid whenusing
Qt because most of the asynchronous tasks performed by the
framework emit asignalwhenthey have finished doingtheir job,
andyou can connect it to a slot that will continue the algorithm.

During the calculations (regardless of any usage of signals
and slots) all event processing gets halted. As a result, the GUI is
not refreshed, userinputis not processed, network activity stops
andtimersdon’t fire—the applicationlooks likeit's frozenand, in
fact, the part of it not related to the time-intensive task is frozen.
How long are “long operations”? Everything that will distract
the end user from interacting with the application is long. One
secondis long, everything longer than two seconds is definitely
too long.

Ouraiminthisarticleistokeepthe functionality while prevent-
ing the end user from getting irritated by a frozen GUI (and the
networkandtimers).Todothat let'stake alook at possible classes
of solutions and domains of the problem.

We canreachour finalgoalof performingcalculationsinone of
two ways—either by doing the computation in the main thread
(the single-threaded approach) or in separate threads (the mul-
tithreaded approach). The latter is widely known and usedin the
Java world, but it is sometimes abused where one thread would
dothejobjustfine.Contrary to popularopinion,threadscanoften
slow down your applicationinstead of speeding it up, so unless
you are sure your program can benefit from being multithreaded
(eitherintermsof speedor simplicity), try to avoid spawningnew
threads simply because you can.

The domain of the problem canbe treated as one of two cases.
Either we canor cannot divide the probleminto smaller parts like
steps, iterations or sub-problems (usually it shouldn’t be mono-
lithic). If the task can be split into chunks, each of them can ei-
therdependonothersornot.If theyareindependent,we canpro-
cessthemat any time andin arbitrary order. Otherwise, we have
to synchronize our work. In the worst case, we can only do one
chunk at once and we can't start the next one until the previous
oneisfinished. Takingall these factors into consideration, we can
choose from different solutions.

Manual event processing

The most basic solutionis to explicitly ask Qt to process pending
events at some point in the computation. To do this, you have to
call CoreApplication: :processEvents () periodically! The follow-

!Actually youshould call QCoreApplication: : sendPostedEvents (). Seethe
documentation for processEvents().

ing example shows how to do this:

for (int 1 = 3; 1 <= sqrt(x) && isPrime; 1 += 2) {
label->setText (tr("Checking %1...").arg(i));
if (x %1 ==10)
isPrime = false;

QCoreApplication::processEvents();
if (!pushButton->isChecked()) {
label->setText (tr("Aborted"));
return;
}
}
This approach has significant drawbacks. For example, imagine
you wanted to perform two suchloopsin parallel—callingone of
themwould effectively halt the other untilthe first oneis finished
(soyoucan'tdistribute computingpower amongdifferent tasks).
It also makes the applicationreact with delays to events. Further-
more the code is difficult to read and analyze, therefore this so-
lutionis only suited for short and simple problems that are to be
processedinasingle thread, suchas splash screensand the mon-
itoring of short operations.

Using a Worker Thread

A different solution is to avoid blocking the main event loop by
performinglongoperationsinaseparatethread. Thisisespecially
usefulif the task is performedby a third party library inablocking
fashion.Insuchasituationit might not be possible to interrupt it
to let the GUI process pending events.

One way to perform an operation in a separate thread that
gives you most control over the process is to use QThread. You
can either subclass it and reimplement its run() method, or call
QThread: : exec() tostartthethread’seventloop, or both:subclass
and, somewhere in the run() method, call exec(). You can then
use signalsandslotsto communicate withthe mainthread—just
remember that you have to be sure that QueuedConnection will be
usedor else threads may lose stability and cause your application
to crash.

Thereare many examplesof usingthreadsinboththe Qt refer-
ence documentationandonline materials, so we won’t make our
ownimplementation,butinsteadconcentrateonotherinteresting
aspects.

Waitingin a Local Event Loop

The next solutionI would like to describe deals with waiting un-
tilan asynchronous task is completed. Here, I will show you how
to block the flow untila network operationis completed without
blockingevent processing.What we could dois essentially some-
thing like this:

task.start();

while (!task.isFinished())

QCoreApplication::processEvents();

This is called busy waiting or spinning—constantly checking a
condition until it is met. In most cases this is a bad idea, it tends
toeatallyour CPUpowerandhasallthe disadvantagesof manual
event processing.

Fortunately, Qt hasaclass to help us with the task: QventLoopis
the same class that the applicationand modal dialogs use inside
their exec() calls. Each instance of this class is connected to the
mainevent dispatchingmechanismand, whenits exec () method
isinvoked, it starts processing events untilyou tell it to stop using
quit().

We can use the mechanism to turn asynchronous operations
into synchronous ones using signals and slots—we can start a
local event loop and tell it to exit when it sees a particular signal
from a particular object:

QNetworkAccessManager manager;
QEventLoop q;
QTimer tT;

tT.setSingleShot(true);
connect (&tT, SIGNAL(timeout()), &g, SLOT(quit()));
connect (&manager, SIGNAL(finished(QNetworkReply*)),
&q, SLOT(quit()));
QNetworkReply *reply = manager.get(QNetworkRequest(
QUrl("http://www.qtcentre.org")));
tT.start(5000); // 5s timeout
g.exec();
if(tT.isActive()){
// download complete
tT.stop();
} else {
// timeout
}
We use one of the new additions to Qt—a network access
manager—to fetch a remote URL. As it works in an asynchronous
fashion,we createalocaleventlooptowaitforafinished() signal
from the downloader. Furthermore, we instantiate a timer that
willterminate the eventloop after five secondsin case something
goeswrong.After connectingappropriatesignals, submittingthe
request and starting the timer we enter the newly created event
loop. The call to exec() will return either when the download is
complete or five seconds have elapsed (whichever comes first).
We find out which s the case by checkingif the timer is still run-
ning. Then we can process the results or tell the user that the
download has failed.

We should note two more things here. Firstly, that a similar
approachisimplementedinaxtSignalwaiter classthatis part of
the libgxt project (http://www.libgxt.org). Another thing is that,
for some operations, Qt provides a family of “wait for” methods
(for example QIODevice::waitForBytesWritten()) that will do
more or less the same as the snippet above but without running
an event loop. However, the “wait for” solutions will freeze the
GUI because they do not run their own event loops.

Solving a Problem Step by Step

If you can divide your problem into subproblems then there is
a nice path you can take to perform the computation without
blocking the GUL. You can performthe task in short steps that will
not obstruct event processing for longer periods of time. Start
processing and, when you notice you have spent some defined
time onthe task, save its state and returnto the event loop. There
needs to be a way to ask Qt to continue your task after it is done
with events.

Fortunately there is such a way, or even two. One of them is
to use a timer with an interval set to zero. This special value will
cause Qt to emit the timeout signal on behalf of the timer once
its event loop becomes idle. If you connect to this signal with
a slot, you will get a mechanism of calling functions when the
applicationis not busy doing other things (similar to how screen
savers work). Here is an example of finding prime numbers in
the background:

class FindPrimes :

{

public QObject

Q_OBJECT
public:
FindPrimes (QObject *parent = 0) : QObject() {}
public slots:
void start(glonglong _max);
private slots:
void calculate();
signals:
void prime(glonglong);
void finished();

http://www.libqxt.org

private:
glonglong cand, max, curr;
double sqrt;
void next(){ cand+=2; curr = 3; sqrt = ::sqrt(cand);}

i

void FindPrimes::start(glonglong _max)

{

emit prime(l); emit prime(2); emit prime(3);
max = _max; cand = 3; curr = 3;

next();

QTimer::singleShot (0, this, SLOT(calculate()));

}

void FindPrimes::calculate()
{
OTime t;
t.start();
while (t.elapsed() < 150) {
if (cand > max) {

emit finished(); // end
return;
}
if (curr > sqrt) {
emit prime(cand); // prime
next();
} else if (cand % curr == 0)
next(); // not prime
else
curr += 2; // check next divisor
}
QTimer::singleShot (0, this, SLOT(calculate()));

}

The FindpPrimes class makes use of two features—it holds its cur-
rent calculationstate (cand and curr variables) so that it can con-
tinue calculations where it left off, and it monitors (by the use of
OTime::elapsed()) how long it has been performing the current
step of the task. If the time exceeds a predefined amount, it re-
turns to the event loop but, before doing so, it starts a single-
shot timer that will call the method again (you might call this ap-
proach “deferred recurrency”).

I mentioned there were two possibilities of doing a task in
steps. The second one is to use QMetaObject: : invokeMethod() in-
stead of timers. This method allows you to call any slot from any
object. One thing that needs to be said is that, for this to work
in our case, we need to make sure the call is made using the
0t::QueuedConnection connectiontype, so that theslot is calledin
anasynchronousway (by default, slot calls withina single thread
are synchronous). Therefore we might substitute the timer call
with the following:

QMetaObject::invokeMethod(this, "calculate",

Qt::QueuedConnection);
The advantage of this over using timers is that you can pass
argumentsto theslot (for example, passingit the current state of
a calculation). Apart from that the two methods are equivalent.

Parallel Programming

Finally, thereis the situation where you have to performa similar
operation on a set of data—for instance, creating thumbnails
of pictures from a directory. A trivialimplementation would look
like this:
QList<QImage> images = loadImages(directory);
QList<QImage> thumbnails;
foreach (const QImage &image, images) {
thumbnails << image.scaled(QSize(300,300),
Qt::KeepAspectRatio, Qt::SmoothTransformation);
QCoreApplication::sendPostedEvents();
}
A disadvantage of such anapproachis that creating a thumbnail
of asingleimage might take quite long, and for that time the GUI

would still be frozen. A better approach would be to perform the
operationin a separate thread:

QList<QImage> images = loadImages(directory);

ThumbThread *thread = new ThumbThread;

connect (thread, SIGNAL(finished(QList<QImage>)),

this, SLOT(showThumbnails(QList<QImage>)));

thread->start(images);
Thissolutionisperfectlyfine,butitdoesn’ttakeintoconsideration
that computer systems are evolvingin a different direction than
five or ten years ago—instead of having faster and faster pro-
cessing units they are being equipped with multiple slower units
(multicore or multiprocessor systems) that together offer more
computing cycleswithlower power consumptionand heat emis-
sion. Unfortunately, the above algorithm uses only one thread
andis thus executed on a single processing unit, which results in
slower execution on multicore systems than on single core ones
(becauseasinglecoreinmulticoresystemsisslower thaninsingle
core ones).

To overcome this weakness, we must enter the world of paral-
lel programming—we divide the work to be done into as many
threads as we have processing units available. Starting with Qt
4.4, there are extensions available to let us do parallel program-
ming: these are provided by Threadrool and Qt Concurrent.

The first possible course of action is to use so called
runnables—simple classes whose instances can be executed by
a thread. Qt implements runnables through its Qrunnable class.
Youcanimplementyour ownrunnable based ontheinterface of-
fered by Qrunnable and execute it using another entity offered by
Qt.Imeanathread pool—an object that can spawna number of
threadsthat execute arbitrary jobs.If the number of jobs exceeds
the number of available threads, jobs will be queued and execut-
ed when a thread becomes available.

Let's go back to our example and implement a runnable that
would create animage thumbnail using a thread pool.

class ThumbRunnable : public QRunnable {

public:
ThumbRunnable(...) : QRunnable(), ... {}
void run(){ m_result = m_image.scaled(...); }

const QImage &result() const{ return m_result; }
bi
QList<ThumbRunnable *> runnables;
foreach(const QImage &image, images) {
ThumbRunnable *r = new ThumbRunnable(image, ...);
r->setAutoDelete(false)
QThreadPool::globalInstance()->start(r);
runnables << r;
}
Basically, everything that needs to be done is to implement the
run() method from Qrunnable. It is done the same way as sub-
classing QThread, the only difference is that the jobis not tiedto a
threadit creates and thus can be invoked by any existing thread.
After creatinganinstance of ThunbRunnable we make sure it won't
be deleted by the thread pool after job execution is complet-
ed. We need to to that because we want to fetch the result from
the object. Finally, we ask the thread pool to queue the job using
the global thread pool available for each applicationand add the
runnable to a list for future reference.

Wethenhavetoperiodically checkeachrunnabletoseeifitsre-
sultisavailable,whichisboringandtroublesome,but fortunately
thereisabetter approachwhenyouneedto fetcharesult. Qt Con-
currentintroducesanumber of paradigmsthat canbeinvokedto
perform SIMD (Single Instruction Multiple Data) operations. Here
we willtake alook only at one of them, the simplest one that lets
usprocesseachelementof acontainerandhavetheresultsready
inanother container.

typedef QFutureWatcher<QImage> ImageWatcher;
QImage makeThumb(const QString &img)
{
return QImage(img).scaled(QSize(300,300), ...);

}

0StringList images = imageEntries(directory);

ImageWatcher *watcher = new ImageWatcher(this);

connect (watcher, SIGNAL(progressValueChanged(int)),

progressBar, SLOT(setValue(int)));
QFuture<QImage> result
= QtConcurrent::mapped(images, makeThumb);

watcher->setFuture(result);
Easy, isn't it? Just a few lines of code and the watcher willinform
us of the state of the SIMD program held in the QFuture object. It
will even let us cancel, pause and resume the program. Here, we
usedthesimplest possiblevariant of the call—usingastandalone
function. In a real situation you would use something more so-
phisticated than a simple function—Qt Concurrent lets you use
functions, class methods and function objects. Third party solu-
tions allow youto further extend the possibilities by using bound
functionarguments.

Conclusion

I have shown you awhole spread of solutions based on type and
complexity of problem related to performing time consuming
operationsin Qt-based programs. Remember that these are only
the basics—you can build upon them, for example by creating
your own “modal” objects using local event loops, swift data
processors using parallel programming, or generic job runners
using thread pools. For simple cases, there are ways to manually
request the application to process pending events, and for more
complex onesdividingthe task into smaller subtasks couldbe the
right direction.

You candownload complete examples that use techniques de-
scribedinthis article from the Qt Quarterly Web site. If you would
like to discuss your solutions, work together with others to solve
aproblemthat’s botheringyou, or simply spend some time with
other Qt (cute?) developers, you can always reach me and others
willing to share their knowledge at http://www.qgtcentre.org

Never again let your GUI get frozen!

Witold Wysota is one of the administrators of Qt-
Centre and a PhD student at Warsaw University of
Technology where he gives lectures on Qt. When not
dealing with Qt he can be found practicing tradi-
tional kung-fu or exploring the Universe with his
brand new 150/1200 Newton telescope.

Qt Quarterly is published by Nokia Corporation, Oslo, Norway.
Copyright © 2008 by Nokia Corporation or original authors.

Authors: Johan Thelin, Witold Wysota, Thomas Zander.
Contributors: Morten Sgrvig.

Production: Katherine Barrios.

Editor: David Boddie.

A selection of Qt Quarterly's articles and source code is avail
able from http://doc. trolltech. com/qq/. Potential contributors
should contact the editors at gg@étrolltech. com

No part of this newsletter may be reproduced,inany formor by any
means, without permission in writing from the copyright holder.

Nokia, Qt and their respective logos are trademarks of Nokia Corpo-
rationin Finland and/or other countries worldwide. All other prod-
ucts named are trademarks of their respective owners. Producedin
Norway.

When reading about Qt for Embedded Linux, many examples
seen in the online press are related to media gizmos,
mobile phonesand other graphics-intensiveapplications.One
common, but less discussed application is in control panels,
used for home automation, industrial machinery and alarm
systems.

The typical control panel does not feature a windowed interface.
It does not run multiple user applicationsat once. They generally
do not feature a full sized keyboard. Instead a touch screen or a
very basic set of buttons is used.

Inthis article, I will present a basic patternthatI've beenusing
when implementing this type of applications. I call it a pattern
because each of these systems that I've come across has its own
peculiarities and it is hard to make them allin one mould.

The Stack

All these systems are based around full screen dialogs—I choose
to call these panels. Most of these panels are fairly static and can
thus be created at start-up. To avoid having to create them all
at once, the singleton pattern can be used. This postpones the
creation of panels until they are first used, but prevents them
from being created more than once.

We will wait just a few moments with this code as there is
oneimportant buildingblock that forms the basis of the pattern:
the panelstack. All panels are kept in a QStackedwidget. This stack
of panelsis kept in a widget that acts as the application’s “main
window”. As there can be only one main window, thisis a single-
ton class and it is called the ranelstack. The panel stack holds all
the panelsandletsyoushow eachoneof theminturnby referring
to the index that you get whenyou add it to the stack.
class PanelStack : public QWidget
{
Q_OBJECT

public:
static PanelStack *instance();
int addPanel (AbstractPanel *);
void showPanel(int);

private:

Vi
So,eachpanelisactuallyanimplementationof AbstractpPanel,and
almost all panels are singletons. The idea s that, the first time an
instance of apanelis called, it addsitself to the panelstack. Then,
eachpanelprovidesamethod called showpanel (). It initializes the
panel and tells the panel stack to show it. This means that each
panel keeps its own index, and all that you need to know when
implementingyour applicationis that you call showpanel () inthe
panel that you want to show.

class AbstractPanel : public QWidget

{

protected:

AbstractPanel (QWidget *parent = 0);

void addPanelToStack();

int panelIndex() const;

The actual singleton implementation is made in each subclass
of AbstractPanel. That is also where the showpanel() method is
added. I have left out a virtual showpanel () method, as different
panels need different arguments when being initialized.

http://www.qtcentre.org

An Example

Let’scontinue by lookingat anexample.Inthis case,a V(R control
panel. It consists of four panels: the main menu, the live panel
(holding the play, pause and stop buttons), the recordings panel
(allowing the user to manage schedules for recording), and
finally, the recording details panel (letting the user configure a
givenschedule for recording).

Each of these panels will be designed using Qt Designer and
their interface will look very much the same. We will focus on
the RecordingsPanel widget in this article. The entire example is
available for download from the Ot Quarterly Web site.

—Recording Schedul

Add Recording l [Edit Recording

Remove Recording

Back

Before we continue, a short word about keeping data away from
theuserinterface code.We usearecordingsclassinparallelto the
panelclassesshownhereandthe panelstack class. Thisallowsall
panels to access the dataindependently of each other.

In this trivial example, we use a 9stringList to keep all the
recordings, but in a real world application this would most prob-
ably be asingleton, possibly coupled with a gabstractModel inter-
face. We start by declaring the class as a singleton and providing
the showpanel () method. In this case, the panel always shows all
recordings, so there is no need for arguments.

class RecordingsPanel : public AbstractPanel

{

public:
static RecordingsPanel *instance();
void showPanel();

private:
RecordingsPanel () ;
static RecordingsPanel *m_instance;

i
The implementation follows. Notice that the implementation
methodaddsthe panelto the stack. Thisistoallow the addpanel ()
method to use methods, signals and slots of the actual class be-
ingimplementedand not the base class. If the addPanelToStack ()
callhad been made from the abstractPanel’s constructor, the vir-
tual methods, signals and slots would have been those of the ab-
stractPanel and not of the RecordingsPanel.

RecordingsPanel *RecordingsPanel::m_instance = 0;

RecordingsPanel *RecordingsPanel::instance()

{
if (!m_instance)
{
m_instance = new RecordingsPanel();
m_instance->addPanelToStack() ;

}

return m_instance;

}

void RecordingsPanel::showPanel()

{

PanelStack::instance()->showPanel (panelIndex());

}

Thesingletonpattern,asshownabove,is usedfor allpanels. Now
looking at the panel itself (in the image opposite) you can see
that this panel consists of a list of recordings and four buttons.
Each of these buttons has a correspondingslot.

class RecordingsPanel : public AbstractPanel

{

public:
static RecordingsPanel *instance();
void showPanel();

private slots:
void addClicked()
void editClicked();
void removeClicked();
void backClicked()

1

Vi
The slots leading to navigation between panels are add (), edit ()
and back(). The Remove Recording button simply removes a
recording fromthe list, but keeps showing the list.

The Back button asks the main menu to show itself using the
showPanel () method, while the Add Recording and Edit Record-
ing buttons passonthe recording’sindex to the recording details
panel.For newrecordings,anindex of -1is passedtoindicatethat
anew recordingis to be created.

void RecordingsPanel::addClicked(
{

RecordingDetailsPanel::instance()->showPanel (-1);

}

void RecordingsPanel::editClicked()
{
RecordingDetailsPanel::instance()->showPanel (
ui.recordingsList->currentRow());

}

void RecordingsPanel::backClicked()
{
MainMenu::instance()->showPanel () ;
}
Inthe RecordingbetailsPanel lass, the showpanel () methodlooks
at theninitializes the user interface accordingly.
void RecordingDetailsPanel::showPanel (int recordIndex)

{ m_currentIndex = recordIndex;
if (m_currentIndex == -1)
ui.lineEdit->setText("");
else
ui.lineEdit->setText (recordings[m_currentIndex]);
PanelStack::instance()->showPanel (panelIndex());
}
The implementation of the panelstack to handle this case is fair-
ly trivial. The widget more or less wraps a QStackedwidget. When
addingapaneltothe panelstack, it adds the paneltoits QStacked-
widget and returns the relevantindex.
int PanelStack::addPanel (AbstractPanel *panel)
{ return m_panelStack->addWidget (panel);
}
Inasimiliar fashion, the showpanel () method simply changes the
currently shown widget in the stacked widget.
void PanelStack::showPanel(int index)

{

m_panelStack->setCurrentIndex(index);
}
Just wrapping a widget in another widget is not a good way
to move forward. However, if we add some functionality to the
panelstack we can start to make some gains. We'll examine one
way to do thisin the next section.

Keeping History in the Stack

In the previous example, we built a set of panels that are navi-
gated according to a static pattern. Clicking Back when in the
recordings panelalways leads to the main menu, and so on. This
isallvery wellinmost smallsystems, butit meansthat we cannot
reuse panelsin different places in the navigationtree.

To avoid this problem, we can keep the navigation history in
the panel stack. Each time a panelis shown, its index is added to
a history stack. Instead of moving to the parent when leaving, a
back() methodis added to the panel stack. This moves one step
backinthe history stack untilthefirst panelisencountered.Inthe
true spirit of the Web browser metaphor, a home () methodis also
added. It takes us all the way to the first panelin one simple call.

Panelreuseisone of the benefits of usingthis pattern. Another
benefit is that the source code dependencies are reduced: each
panelonly needs to know of the panelstack andthe panelslocat-
eddeeperinthenavigationtrees.The parent panelsare nolonger
important. Finally, we make the back () and home () methods slots,
thus removing the need for those slotsin the panels.

class PanelStack : public QWidget
{

int addPanel (AbstractPanel *);
void showPanel(int);
public slots:
void back()
void home();

private:

bi
The changesthat we need to make involve creatingthe m_history
stack and pushing indexes onto it when showpanel() is called.
When back() is called, we pop one index off, and when home() is
called we pop all but one index off it.
void PanelStack::showPanel(int index)
{
m_history.push(index);
showTopPanel () ;
}

void PanelStack::back()
{
if (m_history.count() <= 1)
return; // Cannot go back past the first panel.
m_history.pop();
showTopPanel () ;
}

void PanelStack::home()

{
if (m_history.count() <= 1) // Either already home
return; // or there are no panels to return to.
while (m_history.count() > 1)
m_history.pop();
showTopPanel () ;
}
This designforces arule onthe user—the first panelshownis the
menu and you cannot pop the history beyond that. As you can
see, the home (), back() and showPanel () methods do not update
the widget stack themselves.Instead they call the showToppanel ()
method. Thisis a private method that takes care of the details.
void PanelStack::showTopPanel (
{
m_panelStack->setCurrentIndex(m_history.top());
dynamic_cast<AbstractPanel*>(m_panelStack->widget(
m_history.top()))->enterPanel();

It not only shows the right panel, but it calls the enterpan-
el() method of that panel. The enterpanel () method s a virtual
method added to the AbstractPanel class. The default implemen-
tationis adummy one that does nothing.

Theidea here is that a panel can appear both as a result of its
showPanel () method being called and from a panel stack event,
resulting from a call to home() or back(). In the latter case the
panel needs to know that it is about to be shown so that it can
update its contents. For example, the recordings panel updates
its list of recordings here.

Pulling Apart the Stack

We now have a method that we know is called every time a new
panel is about to be shown. So, why not use it to update some
common parts of the user interface. For instance, if a title bar is
apart of every panel, why not place it in the panelstack and add
avirtualmethod called titleText () to each abstract panel?

lass AbstractPanel : public QWidget

virtual void enterPanel() {}
virtual QString titleText() const = 0;

i
A small change to the panel stack updates the m_titleLabel label
each time anew panelis changed.
void PanelStack::showTopPanel ()
{
m_panelStack->setCurrentIndex(m_history.top());
AbstractPanel *panel = dynamic_cast<AbstractPanel*>(
m_panelStack->widget (m_history.top()));

panel->enterPanel () ;
m_titleLabel->setText(panel->titleText());
}
Therearenumerousotherelementsthat canbeaddedtothe pan-
elstack toformacommoninfrastructure.If nothingelse,Back and
Home buttons, and perhaps a couple of shortcut buttonsleading
to specific forms. The buttons can then be hidden and shown by
addingvirtualmethodssuchas hasBack () and hasHome () tothe Ab-
stractPanel class.

More through the Stack

The stacked approach does not only allow for the transfer of
information from the panels to the stack. It can work the other
way around, too. This is very helpful when dealing with systems
with rudimentary control methods.

For example, implementing a keyboard plugin for a keypad
consisting of four buttons placed next to the screen can feel like
an overkill solution. Instead, one can intercept the events in the
panelstack and, fromthat stack, pass the eventsonto the current
panel through a set of virtual methods. A custom solution, yes,
but as you are probably dealing with custom hardware that is
only to be expected.

I have foundthe panelstack approach usefulin numerous cus-
tomer cases and it always performs well while being flexible and
adaptabletoapplication-specificrequirements.I hope youfindit
to be a useful way to think about embedded user interfaces.

Johan Thelin is the author of the Foundations of
Qt Development book available from Apress and
has a soft spot for embedded systems. He is also
involved in the QtCentre and works as a consultant
for BitSim AB.

As we saw earlier in this issue, Qt can be used to generate
documents in an ever expanding range of formats that can
be viewed and edited with external applications. Qt also
comes with facilities to display HTML “out of the box”, and
cangenerateits own print previews, but what about files that
originate outside Qt applications?

Fortunately, there are third party libraries available for some
of the things that Qt doesn’t provide. One of these is Poppler, a
Portable Document Format (PDF) rendering library that forms
the basis of a number of widely-used PDF viewing applications.
Poppler is a fork of the Xpdf PDF viewer that is licensed under
the GNU General Public License. Xpdf can also be obtained under
other licensing terms.

Poppleris designedin a way that allows it to be used with any
toolkit or framework as long as a suitable rendering backend is
available. Qt application developers are fortunate in that there is
also a Qt frontend available—aset of Qt-style classes that use Qt
classes to describe parts of PDF documents.

PDF Viewer
Fle Windows
Document Controls
or: Forwards |~ Find Clear Scale document: (100% |~

B

In this article, we'll take a brief look at some of the features pro-
vided by Poppler in the context of creating a simple PDF viewing
application.

Setting Things Up

Developers using Linux should find that Poppler and the Qt 4
frontend are available as a package for most recent distribu-
tions.DevelopersonWindows,Mac0SX,and other Unix platforms
can download source code from the poppler.freedesktop.org
Web site.

By default, Poppleris built withallkinds of frontends and back-
ends. If you compile Poppler from source, you can exclude some
of these to save compile time. When configuring the build, it
may be easier to set the installation prefix to that used for the Qt
installation—this prefix is the directory under which subdirecto-
ries containing executables, libraries and data files are stored.

It is important to know where the Poppler library and header
files will be installed because our example will need them.

Rendering Documents

Inour example, we provide asimple user interface to display PDF
files, displaying a single page at a time and providing controls
to let the user move between pages. Each page is displayed in
a custom widget, Documentwidget, held in the main window’s
central widget, a scroll area.

The user opens a new file via a file dialog, which we open
in response to an action being triggered. The path to the file is

passed to the Documentwidget SO that the document it contains
can be fedto the Poppler library.

Unlike withmany Qt classes, we load a document using a static
functionin the following way:

Poppler::Document *doc = Poppler::Document::load(path);

If the document returned is not null, we have a document that
we can explore. Note that our example takes ownership of the
document, so we must remember to dispose of it when we have
finished withit.

Eachdocument containsaseriesof pagesthat canbe obtained
one by one using the Document::page() function. Although the
Document class has a collection of functions to control the appear-
anceof thedocument,actualrenderingis performedby each page
object.In our example, we render pages into QImage objects that
we display using the Documentwidget, itself just a simple QLabel
subclass.

The key part of our Documentwidget: : showpage () functionlooks
like this:
void DocumentWidget::showPage(int page)
{
QImage image = doc->page(currentPage)->renderToImage (
scaleFactor * physicalDpiX(),
scaleFactor * physicalDpiY());

setPixmap (QPixmap::fromImage(image));
}

In the above code we pass the resolution of the image to be
created, multiplied by a scale factor that the user controls via the
example’s user interface. We have to be careful with the range
of scale factors available because it is easy to request extremely
large images. In practice, we restrict the user’s choice to a set of
predefined scale factors.

Searching for Text

One of the many usefulfeaturesthat Poppler providesis the abili-
ty tolocate specifictext stringsin PDF documents. Since PDF is de-
signedtostore printablerather thaneditable documents, itisnot
always easy to easily access and reconstruct the author’s original
text. However, Poppler does a good job of locating text in many
documents, and we can expose this feature in our example.

The APIfor locatingtext provides conventionalfeaturessuchas
case-insensitive and directional searching, but also returnsinfor-
mationabout the positionof any located text onthe page—since
PDF is a display format, this is really the only useful information
about the text we can obtain. Thisinformation can be used to in-
dicate where any subsequent searches should begin.

Basically, the code to performa forward searchin a given page
looks like this:
bool found = page->search(text, searchLocation,
Poppler::Page::NextResult
Poppler::Page::Caselnsensitive);
Here, searchLocation iS a QRectF object that indicates where the
search should start from on the given page. Initially, when we
performasearch, wejust passadefault constructed QrectF object
to start from the page origin.

The rectangle we obtain from the Page: : search() function can
be used when we render the page to highlight the located text
andscrolltheview to make sureitis visible. However, the position
and dimensions of the rectangle are given in points (1 inch =
72 points), so we need to transform the rectangle to cover the
correct area on-screen.

Searching through a document for a piece of text is slightly
more involvedthanjust asingle function call. We'll look at thisin
more detail later.

poppler.freedesktop.org

Extracting Text

Since the mapping between the author’s original text and its
locationon-screenmay be purely visual,itis difficult to automate
the extraction of text from PDF files, though there are tools that
try very hard to achieve this.

Many document viewers let the user select and export text by
making them select a region on-screen, giving the application
something to work with, and Poppler supports this approach by
providing a function that returns a string for a given rectangle
that we call like this:

QString text = doc->page(currentPage)->text(selectedRect);

The method we use is somewhat different to this. We'll cover it
inmore detail later.

The Example in More Detail

Having covered the basics of displaying pages, searching, and
extracting text from documents, let’s take a closer look at how
our example uses these features.

We provide two functions to search for text strings supplied
by the user via the user interface. For forwards searching, we
start by looking for strings on the current page, beginning at the
current search location, then try each following page until the
end of the document.

QRectF DocumentWidget::searchForwards(const QString &text)

{
int page = currentPage;
while (page < doc->numPages()) {

if (doc->page(page) ->search(text, searchLocation,
Poppler::Page::NextResult,
Poppler::Page::Caselnsensitive)) {

if (!searchLocation.isNull()) {
showPage(page + 1);
return searchlLocation;
}
}
page += 1;
searchLocation = QRectF();

}
If we reach the end of the document without finding anything,
we search from the beginning until we reach the current page.

page = 0;
while (page < currentPage) {
searchLocation = QRectF();

if (doc->page(page) ->search(text, searchLocation,
Poppler::Page::NextResult,
Poppler::Page::Caselnsensitive)) {

if (!searchLocation.isNull()) {
showPage(page + 1);
return searchlLocation;
}
}
page += 1;

}

return QRectF();
}
Aswellasrenderingpagesat different scales,as shownearlier, we
wouldliketo highlighttheresults of searches.Todothis, weinsert
some code to paintontheimage obtainedfromthe current page,
using a matrix to map the rectangle onto the image.

QMatrix DocumentWidget::matrix() const

{

T2 0
Vi

return QMatrix(scaleFactor * physicalDpiX() / 72.0,
0, scaleFactor * physicalDpiY() / 72.0,
0, 0);

void DocumentWidget::showPage(int page)

{

QImage image = doc->page(currentPage)->renderToImage (
scaleFactor * physicalDpiX(),
scaleFactor * physicalDpiY());

if (!searchLocation.isEmpty()) {
QRect highlightRect = matrix().mapRect(
searchLocation).toRect();
highlightRect.adjust (-2, -2, 2, 2);
QImage highlight = image.copy(highlightRect);
QPainter painter;
painter.begin(&image);
painter.fillRect (image.rect(),
QColor(0, 0, 0, 32));
painter.drawImage(highlightRect, highlight);
painter.end();

}
setPixmap(QPixmap::fromImage(image));
}
The result of this additional effort is shown in the following
image—the located text is displayed normally while the rest of
the pageis slightly darker.

dering the OpenGL Scene

ctual OpenGL rendering is done by reimplementing QGra;
ne’s drawBackground!| Function. By rendering the Opent
in drawBackground(), all widges and other graphics i
awn on top. It is possible o reimplement drawForegrown
OpenGL rendering on wop of the graphics scene, if tha
ed.

like when subclassing QELWidget, it is not sufficient w
nmon s@ee in initial izeGLyl
active on the GL context when drawBackground() is call

ainter chanpes the GL state when begind

or resizecl(]). A painter is
1 is called. For .

In our example, we allow the user to draw a selection onto the
page by reimplementingthree of the mouse event handler func-
tions in our DocumentWidget. In these we maintain a QRubberBand
object to keep track of the area selected, following the pattern
shownin the QrubberBand documentation.

Themouserelease event handleris where we start the process
of selecting text:
void DocumentWidget::mouseReleaseEvent (QMouseEvent *)

{

if (!rubberBand->size().isEmpty()) {
QRectF rect = QRectF(rubberBand->pos(),
rubberBand->size());
rect.moveLeft (rect.left() -
(width() - pixmap()->width()) / 2.0);
rect.moveTop(rect.top() -
(height() - pixmap()->height()) / 2.0);
selectedText (rect);
}
rubberBand->hide() ;

}

When the user releases the mouse button, we create a rectangle
with coordinates relative to the top-left corner of the image
within the label, and we pass this to the selectedText () function
which is responsible for informing the rest of the application
about any text it finds.

As noted earlier, the Poppler page class provides a function to
return text withinarectangle ina document. However, in select-
edText (), we use a more convoluted method to show how much
information we can obtainabout a document.

We begin by mapping the selection rectangle onto the page,
using the inverse of the matrix we used to highlight search
results, before obtaining a list of TextBox objects, each of which
describes a piece of text on the page.

void DocumentWidget::selectedText(const QRectF &rect

{

QRectF selectedRect = matrix().inverted()
.mapRect (rect);
0String text;
bool hadSpace = false;
QPointF center;
foreach (Poppler::TextBox *box,
doc->page(currentPage) ->textList()) {
if (selectedRect.intersects(box->boundingBox())) {
if (hadSpace)
text += " ",
if (!text.isEmpty() &&
box->boundingBox().top() > center.y())
text += "\n";
text += box->text();
hadSpace = box->hasSpaceAfter();
center = box->boundingBox().center();

}
if (!text.isEmpty())
emit textSelected(text);
}

We test whether each piece of text lies within the selection and
appendit in a gstring if it does. We also perform some elemen-
tary checks to see if we can cleverly insert newline characters in
appropriate places.

Note that, while we're satisfied with obtaining whole pieces

of text (typically words inasentence), recent versions of Poppler
allow the individual charactersin TextBox objects to be located.

ar he e

Eﬂfmkwise ﬁ'om rop-feﬁ: Wihite on black, white on dark Blue,

E_l.'l‘]'ll'lﬂﬂ' [t I':Fllf.fl‘ i!l’l’fl‘l gl’f{'ﬂ o 5‘]‘:!’(&'.

B}- pIJ}-JDg “"i(h tl'li.‘ I't.‘l'_iI green .'lJ'Id blLlE' ‘r':ll ues (]l'- c.1c|'| C(]IU[, you E
Can s&c I'IUW tl'li.‘ .1|gnri ll'l Iy gr_'ncm &5 new cumbin.uiuns U['- CﬂIﬂJ'S.

Trv toavoid choosine forepround ane ackeround colors that are
1] cf fi 1 and back 1 calars th

In the user interface, when the user selects some text, we dis-
play it in a text browser so that it can be copied and pasted
elsewhere.

Building the Example

The example is provided as a standard Qt project with a simple
pdfviewer.pro file. Because there is a certainamount of freedom
associated with where you can install the Poppler library and
header files on your system, you will need to modify this file to
use the correct paths.

OnUbuntu8.04withthelibpoppler-qt4-dev packageinstalled,
the appropriate paths are as follows:

INCLUDEPATH += /usr/include/poppler/qtd

LIBS += -L/usr/1lib -1lpoppler-qt4
Other Linux distributions may install these files in different
locations,anddevelopersonother platforms may findit easier to
build the library alongside the example instead of installingit.

Other Features and Possible Improvements

Our PDF viewer example only uses the most basic features of the
Poppler library. Since many documents use features like encryp-
tion, slideshow transitions, tables of contents and annotations,
theviewerapplicationsthatusePopplertorenderdocumentsrely
onthe library’s support for these features.

Popplerincludesanumber of low levelfeatures that are useful
for the purpose of analysing PDF files. Access to the list of fonts
used in a document and the font data itself can be useful when
preparing documents for publication.

Accesstothe body of textinadocumentis usefulto developers
looking to index documents for text mining and subsequent
analysis. However, as noted earlier, this might be of limited use
for some documents. A good summary of theissuessurrounding
text extraction can be found on the following page:

http://www.glyphandcog.com/textext.html

Information that is not part of the visible document is also
available via the Poppler API. Annotations, scripts (typically writ-
teninJavaScript) and the URLs for hyperlinks can all be obtained,
thoughitis up to the application developer to present thisinfor-
mationina meaningful way.

Like Qt's gprinter class, Poppler is also able to write PostScript
files,sowe couldeasily add supportfor file export and conversion.
Recentversionsalso support PDF output,and thisopensthe door
to the use of the library for PDF manipulation.In fact, since the li-
brary allows us to examine documents without havingto display
pages, it is possible to write command line tools to handle docu-
ments, and a number of these are supplied with Poppler.

Finding Out More

Poppler is a hosted on freedesktop.org, a site dedicated to Free

and Open Source desktop projects:
http://poppler.freedesktop.org/

Poppler’sQt 4 frontend hasits owndocumentation, which can be
obtained via the project’s Wiki:

http://freedesktop.org/wiki/Software/poppler
Popular PDF viewers which use Poppler include Okular and
Evince for the KDE and GNOME desktop environments:
http://okular.kde.org/
http://www.gnome.org/projects/evince/
The Xpdf application, from which Poppler is derived, can be
obtained from the following Web site:
http://www.foolabs.com/xpdf/

The source code for the example described in this article can be
obtained from the Ot Quarterly Web site.

David Boddie is a Senior Technical Writer at Nokia,
Qt Software in Oslo, Norway. He has a long-standing
love/hate relationship with document formats, and
PDF in particular.

http://www.glyphandcog.com/textext.html
http://poppler.freedesktop.org/
http://freedesktop.org/wiki/Software/poppler
http://okular.kde.org/
http://www.gnome.org/projects/evince/
http://www.foolabs.com/xpdf/

Qt Eclipse Integration for Linux Open Sourced

Users of the Eclipse integrated development environment on
Linux can now obtain a version of the Qt Eclipse Integration
under the GNU General Public License (GPL) versions 2 and 3.

(++ and Java developers can use the integration to create,
build, debug and run Qt applications from within the Eclipse IDE.
This release now makes it possible for motivated developers to
study, modify,improve andredistribute the code that binds Qt, Qt
Jambiand Eclipse together.

More details can be found on the Qt Software Web site:
http://trolltech.com/developer/eclipse-integration

Qtopia Becomes Qt Extended

At the end of September, Qt Software renamed and relaunched

Qtopia with the release of Qt Extended 4.4. This release is more

than just a rebranded version of Qtopia, however, as it includes

several new features:

« Amodular architecture for feature selection.

« Anadvancedtouch-based user interface.

* An IP communications framework based on Telepathy for
Instant Messagingand presence.

* A unified inbox for email, SMS, MMS and IM, plus push IMAP
e-mailand other messaging enhancements.

e Qt UI Test, a tool for automated system tests of the target
device.

More informationis available on the Qt Software Web site:
http://trolltech.com/about/news/qt-extended-4.4-released

New Web Site for Qt Software

With the transfer of Trolltech to Nokia, the trolltech.comWeb site
has been overhauled to reflect the updated Qt brand. One of the
main aims of the new site is to make it easier for visitors to find
resources quickly within a few clicks of the front page.

Most of the resources previously found on the site have been
migratedto the new site, and we expect the new blend of oldand
new material to be the ideal starting point for all kinds of users
and developers with aninterest in Qt.

Qt Quarterly Goes Digital

Qt Quarterly 27 is the first issue of the newsletter to be distribut-
ed purely in a digital format. Commercial licensees will receive Qt
Quarterly in PDF format, and HTML versions of articles from each
issue willbe made available to the general publiconthe Qt Quar-
terly Web site at around the time of publication of the following
issue.

Printed copies of back issues continue to be available to cus-
tomers who missed them the first time round, though there are
now limited copiesof earlyissues.Customersshouldalready have
access to a range of back issues in PDF format via their support
and downloadareas on trolltech.com.

Qt Centre Foundation Established

Just before the summer the Qt Centre Foundation was estab-
lished in Warsaw, Poland, to formalize the organization behind
thelargest online community site for Qt. The foundingboard con-
sistsof Jacek Piotrowski(president)and Witold Wysota (vice-pres-
ident), and is supported by a council comprising of Axel Jaeger,
Daniel Kish and Johan Thelin. The foundation works to promote
the use of Qt and open source software through Internet activi-
ties, competitionsand other initiatives helpingthe creation of Qt
software.

Thefoundationwelcomes donationsand other assistance that
canallow themto continuebuildingandhelpingthe Qt communi-
ty. For more information, visit http://foundation.qtcentre.orgor
contact foundation@qtcentre.org

Coin3D 3.0.0 Released

Trolltech partner Kongsberg SIM has released Coin3D 3.0.0!
Coin3D is a high-level, retained-mode toolkit for effective 3D
graphicsdevelopment.Coin3DandQttogetherpresenttheeasiest
way to create powerful, cross-platform 3D applications.

UsingSoQtor Quarter (aset of GUIbindingsincludedin Coin3D)
you can display 3D graphics from Coin (the core 3D rendering li-
brary in Coin3D) as a gwidget.

Highlighted features and improvementsinV3.0.0 are
1. Performance Profiling Kit

2. Z-buffer control

3. Improved support for shaders

4. New shadow node
5. Support for SCcXML

The Performance Profiling Kit is intended for use during applica-
tion development to identify performance bottlenecks in Coin-
based applications.

For more informationabout Coin3D, includinga Coin3D and Qt
tutorial, visit www.coin3d.org.

KOffice Moves Forward with ODF Support

A project aimed at improving the support for OpenDocument
Format (ODF) filesin KOffice, the office suite for KDE, has released
the source code used to automate the tests that check correct
handling of files in this format.

Former Troll, Girish Ramakrishnan, and his colleagues at For-
wardBias Technologies have been working towards ODF reading
and writing support in the KWord word processor (itself based
on Qt’s Scribe text engine) by analysing existing tests, verifying
KWord's behavior and automating the process for each test. The
work is described on the ForwardBias Technologies weblog:

http://blog.forwardbias.in/2008/05/kword-odf-support.html
http://blog.forwardbias.in/2008/10/kword-odf-lists.html

The ODF-Koffice project is sponsored by the NLnet Foundation,
anorganisation with a focus on contributionto an openinforma-
tion society. More informationabout the project can be found on
the following page:

http://www.nlInet.nl/project/odf-koffice/

http://trolltech.com/developer/eclipse-integration
http://trolltech.com/about/news/qt-extended-4.4-released
trolltech.com
trolltech.com
http://foundation.qtcentre.org
foundation@qtcentre.org
www.coin3d.org
http://blog.forwardbias.in/2008/05/kword-odf-support.html
http://blog.forwardbias.in/2008/10/kword-odf-lists.html
http://www.nlnet.nl/project/odf-koffice/

