
Issue 27 · Q3 2008

Contents

Pimp My Widgets Developer Contest . 1

Writing ODF Files with Qt . 1

Keeping the GUI Responsive . 3

The Panel Stack Pattern . 6

Poppler: Displaying PDF Files with Qt . 9

Qt News . 12

Pimp My Widgets Developer Contest

Qt Developer Days, Munich – 14 October 2008 - Do you

break out into a rash when you see an ugly user interface?

Does adding style, animation, functionality and bling to

applications large and small make you grin? Then the “Pimp

My Widgets” Developer Contest is for you!

Qt Software is kickin’ out a new de-

veloper contest, throwin’ down a

challengetotheQtcommunityof de-

veloperstocreate innovative,attrac-

tive and functional and blingin’ wid-

gets using Qt across all supported

platforms.

Qt developers are able to “pimp”

widgets and simple applications

from several categories for a chance to win

the grand prize of a Segway


i2 Personal Transporter,

or one of three Nokia N810 Internet Tablets. A call for

entries was issued this morning via a YouTube Video,

http://www.youtube.com/watch?v=p2pXXAVkhW8, and devel-

opers are encouraged to submit videos of their projects in

response.

Submission deadline: 31 December 2008

More information, including guidelines, categories and judging

criteria can be found at http://trolltech.com/pimpmywidgets.

Technology Preview release of Qt 4.5

Qt 4.5 brings a ton of new features aimed at achieving our

three main design goals for the release:

1. To improve the runtime performance of Qt-based appli-

cations.

2. To upgrade our Qt Webkit Integration to allow you to

realize the fullpotentialof the best browser engineonthe

market in your Qt applications.

3. To future proof your investment on the Mac platform by

adding 64-bit support.

Preview packages are available now on our Website for

download—try out the new features for yourself, and tell

us what you think! For more information, please visit the Qt

Developer Zone:

http://www.trolltech.com/developer/preview-qt-4.5

Writing ODF Files with Qt

The upcoming release of Qt 4.5 marks the appearance of

the QTextDocumentWriter class, making it possible to create

OpenDocument Format (ODF) files fromany Qt text document.

This opens the door to automated document creation and

distribution in a standards-compliant format that users can

open in a wide variety of word processors.

A prime use case for automated document creation is report

generation. An example of this is a store that performs periodic

inventory checks and, thus, needs to know if what the database

thinks is on the shelves actually reflects real life. Consider some

software that takes the database records and creates a readable

document for one day’s worth of work. That document can then

be exported to ODF and sent to the person who does the work.

Inthisarticlewewillwriteasimplereport generator intheformof

a phone bill creator. We will create one class, the PhoneBillWriter,

to represent the phone bill for one client,andyoucanmodify it or

use it as a starting point for your own reporting needs.

Getting Started

The PhoneBillWriter class has the followingdefinition:

class PhoneBillWriter

{

public:

 PhoneBillWriter(const QString &client);

 ~PhoneBillWriter();

 struct PhoneCall {

 QDateTime date;

 int duration; // in seconds

 int cost; // in euro-cents

 };

 void addPhoneCall(const PhoneCall &call);

 void addGraph(QList<int> values,

 const QString &subtext);

 void write(const QString &fileName);

private:

 QTextDocument * const m_document;

 QTextCursor m_cursor;

};

http://www.youtube.com/watch?v=p2pXXAVkhW8
http://trolltech.com/pimpmywidgets
http://www.trolltech.com/developer/preview-qt-4.5

2 Qt Quarterly

This allows us to create one PhoneBillWriter for each bill and fill

it with data, using calls to the addPhoneCall() method. After we

have added all our data we call the write() method to finish the

current bill. This is a classic case of using the builder pattern.

Internally, the class uses a QTextDocument as can be seen in the

list of private members. The QTextDocument class is used in a lot of

places in Qt and its widgets. QTextEdit uses one and you can ac-

cess it using the QTextEdit::document() method. The QTextDocu-

ment is a text document with the ability to containstructuredtext

as well as markup (bold and italic) and much more. See Qt’s Text

Edit demo for an overview.

The class QTextCursor is providedto allow the content of a text

document to be manipulated. This is very much in the spirit of

having a blinking cursor on your word processor and having the

ability to move the cursor aroundandinsert text. TheQTextCursor

class gives us the ability to do all this programatically.

Writing the Bill

The approach used in this report writer is to create a QTextDocu-

ment in the constructor and add the header and nice formatting

informationthat willbethesamefor eachphonebill.Here’sasim-

ple implementation:

PhoneBillWriter::PhoneBillWriter(const QString &client)

 : m_document(new QTextDocument()),

 m_cursor(m_document)

{

 m_cursor.insertText(QObject::tr(

 "Phone bill for %1\n").arg(client));

 QTextTableFormat tableFormat;

 tableFormat.setCellPadding(5);

 tableFormat.setHeaderRowCount(1);

 tableFormat.setBorderStyle(

 QTextFrameFormat::BorderStyle_Solid);

 tableFormat.setWidth(QTextLength(

 QTextLength::PercentageLength, 100));

 m_cursor.insertTable(1, 3, tableFormat);

 m_cursor.insertText(QObject::tr("Date"));

 m_cursor.movePosition(QTextCursor::NextCell);

 m_cursor.insertText(QObject::tr("Duration (sec)"));

 m_cursor.movePosition(QTextCursor::NextCell);

 m_cursor.insertText(QObject::tr("Cost"));

}

PhoneBillWriter::~PhoneBillWriter()

{

 delete m_document;

}

We start by adding a personal note and follow this with a table

and the table header, which we fill them with the header labels.

We don’t need to specify in advance how many rows there are in

the table.

The interesting bits are the m_cursor usage, which includes

call to methods like insertTable() and insertText() to actually

modify the document.

TheQTextCursoralsounderstandstheconceptsof selectingand

removing text. A very powerful method on the cursor is movePo-

sition(), to which you can pass one of the many values from its
MoveOperation enum.This makes the class really behavelike acur-

sor since all the usualnavigationoperationsare there. Inthis case

we use a navigation operation that’s new in Qt 4.5: the NextCell

operation moves the cursor to the start of the next table cell. As

a result, the text passedto the followinginsertText() callwillend

up at the start of the table cell.

After setting up the header of the document we are ready to

add actual user information to it. The caller can add individual

phone calls using the addPhoneCall() method, passing in the

individual fields that we show in the table.

void PhoneBillWriter::addPhoneCall(

 const PhoneBillWriter::PhoneCall &call)

{

 QTextTable *table = m_cursor.currentTable();

 table->appendRows(1);

 m_cursor.movePosition(QTextCursor::PreviousRow);

 m_cursor.movePosition(QTextCursor::NextCell);

 m_cursor.insertText(call.date.toString());

 m_cursor.movePosition(QTextCursor::NextCell);

 m_cursor.insertText(QString::number(call.duration));

 m_cursor.movePosition(QTextCursor::NextCell);

 QChar euro(0x20ac);

 m_cursor.insertText(QString("%1 %2").arg(euro)

 .arg(call.cost / (double) 100, 0, ’f’, 2));

}

To show the phone call later, we add a row to our table and then

continue to add the text to the document for each of the table

cells.WecalltheappropriateQStringmethodstoconvert the inte-

ger data into text so we can fine-tune the way our data is shown.

After all, the goal in our example is to make a pretty looking ver-

sion of the raw data, and properly formatted text is the way to

get there.

Having just text, even with tables, makes for boring reading.

Adding graphs or other pictures is always a good way to make a

document much more readable. This document talks about cre-

atinganODFdocument,andtheOpenDocumentFormat allowsus

to embed images into the final file, unlike HTML, for example.

In order to get the document into the final ODF file all we need

to do is insert the image into the QTextDocument. It will not be a

big surprise to learn that there is a QTextCursor::insertImage()

method to do exactly this.

For our example document,we wantedto addagraphto show

the amount of calls the client made in the last few months. For

this the followingcode was used:

QList<int> callsPerMonth;

callsPerMonth << 6 << 84 << 76 << 0 << 93 << 128 << 76

 << 31 << 19 << 4 << 12 << 78;

phoneBill.addGraph(callsPerMonth, "Your past usage:");

To actually create the graph, our solutionis to create aQImage, use

a QPainter to draw the values onto it, and then insert the image

into the document at the right location.

void PhoneBillWriter::addGraph(QList<int> values, const

QString &subtext)

{

 const int columnSize = 10;

 int width = values.count() * columnSize;

 int max = 0;

 foreach (int x, values)

 max = qMax(max, x);

 QImage image(width, 100, QImage::Format_Mono);

 QPainter painter(&image);

 painter.fillRect(0, 0, image.width(), image.height(),

 Qt::white); // background

 for (int index = 0; index < values.count(); ++index) {

 // Adjust scale to our 100 pixel tall image:

 int height = values[index] * 100 / max;

 painter.fillRect(index * columnSize,

 image.height() - height, columnSize, height,

 Qt::black);

 }

 painter.end();

 QTextCursor cursor(m_document);

 cursor.movePosition(QTextCursor::End);

 cursor.insertText(subtext);

 cursor.insertBlock();

 cursor.insertImage(image);

}

First, we calculate the required width of our graph based on the

amount of values passed in. We choose to always have a height

Issue 27 Qt Quarterly3

of 100 pixels and scale the values to fit in that range since most

graphs are designed to show the relative sizes of the values to

each other.

We use a monochrome format for the image, which means

only two colors. You can use any image format you want for ODF,

though. Two colors just seems enough for this use case.

After creation of the actual image we create a new QTextCur-

sor and move it to the end of the document, where we insert the

graph. An important note is that this cursor has a position that

may be different from the m_cursor object. The reason for creat-

ing a new cursor here is to make sure the user can still call ad-

dPhoneCall() after the addGraph() call without affecting the posi-

tioning of the textual content.

The last part of our PhoneBillWriter class is to actually create

the OpenDocument Format file from all the information we put

into the writer object. The hard work is all done by the QTextDoc-

umentWriter class, which is capable of writing to various formats,

like plain text, HTML and ODF. The default is ODF, making the im-

plementationtrivial for us:

void PhoneBillWriter::write(const QString &fileName)

{

 QTextDocumentWriter writer(fileName);

 writer.write(m_document);

}

The above image shows the finaldocument inOpenOffice.org.As

it stands,it’sintentionallysimplefordemonstrationpurposes,but

there’saslightlymoredecorativeexampleincludedalongsideit in

the archive available from the Qt Quarterly Web site.

Drawing Conclusions

The example we have presentedis fairly simple and is focusedon

showingthebasicODF writingcapabilitiesof QTextDocumentWriter

rather than making the output look as pretty as possible.

Qt has plenty of features that we can use to improve the ap-

pearanceof the phonebillandusefulnessof the writer. For exam-

ple, we could use the Qt SQL module to extract real information

fromanexistingdatabaseanduseQPainter to draw more visually

appealinggraphs and charts.

We could also create a nice frontend application to help the

user create reports, or use Qt’s ODF capabilities to do something

completely unrelated to phone bill, reports or accounting. What

you create with this new feature is up to you!

Thomas Zander is a Software Engineer at Nokia,

Qt Software in Oslo, Norway where he works on

everything related to text. In his spare time,when

not working onKOffice,he enjoys spending time in

the Norwegian countryside.

Keeping the GUI Responsive

At QtCentre people come to us with the recurring problem of

their GUIs freezing during long operations. The issue is not

difficult to overcome but you can do it in many different ways,

so I’d like to present a range of possible options that can be

used depending on the situation you are dealing with.

Performing Long Operations

Thefirst thingtodois tostate thedomainof theproblemandout-

line paths that canbe takento solve it. The aforementionedprob-

lem can take one of two forms. The first variation is when a pro-

gramhas to execute acalculation-intensive task that is described

as a series of operations to be performed in sequence in order to

obtain the final result. An example of such a task is calculating a

Fast Fourier Transform.

The second variation is when a program has to trigger some

activity (for instance a network download) and wait for it to be

completed before continuing to the next step of the algorithm.

This variationof the problemis, in itself, easy to avoidwhenusing

Qt because most of the asynchronous tasks performed by the

framework emit asignalwhenthey have finisheddoingtheir job,

and you can connect it to a slot that will continue the algorithm.

During the calculations (regardless of any usage of signals

and slots) all event processing gets halted. As a result, the GUI is

not refreshed,user input is not processed,network activity stops

andtimers don’t fire—theapplicationlooks like it’s frozenand, in

fact, the part of it not relatedto the time-intensive task is frozen.

How long are “long operations”? Everything that will distract

the end user from interacting with the application is long. One

second is long, everything longer than two seconds is definitely

too long.

Our aiminthisarticle is tokeepthefunctionalitywhileprevent-

ing the end user from getting irritated by a frozen GUI (and the

network andtimers).Todothat let’s takealook at possibleclasses

of solutions and domains of the problem.

We canreachour finalgoalof performingcalculationsinoneof

two ways—either by doing the computation in the main thread

(the single-threaded approach) or in separate threads (the mul-

tithreaded approach). The latter is widely known and used in the

Java world, but it is sometimes abused where one thread would

dothejobjust fine.Contrary topopular opinion,threadscanoften

slow down your application instead of speeding it up, so unless

youare sure your programcanbenefit frombeingmultithreaded

(either intermsof speedor simplicity),try toavoidspawningnew

threads simply because you can.

The domainof the problemcanbe treatedas one of two cases.

Either we canor cannot divide the probleminto smaller parts like

steps, iterations or sub-problems (usually it shouldn’t be mono-

lithic). If the task can be split into chunks, each of them can ei-

ther dependonothersor not.If they areindependent,wecanpro-

cess them at any time and in arbitrary order. Otherwise, we have

to synchronize our work. In the worst case, we can only do one

chunk at once and we can’t start the next one until the previous

one is finished. Takingall these factors into consideration,we can

choose from different solutions.

Manual event processing

The most basic solution is to explicitly ask Qt to process pending

events at some point in the computation. To do this, you have to

call QCoreApplication::processEvents() periodically.1 The follow-

1Actually you shouldcallQCoreApplication::sendPostedEvents(). See the

documentationfor processEvents().

4 Qt Quarterly

ing example shows how to do this:

for (int i = 3; i <= sqrt(x) && isPrime; i += 2) {

 label->setText(tr("Checking %1...").arg(i));

 if (x % i == 0)

 isPrime = false;

 QCoreApplication::processEvents();

 if (!pushButton->isChecked()) {

 label->setText(tr("Aborted"));

 return;

 }

}

This approach has significant drawbacks. For example, imagine

you wantedto perform two such loops in parallel—callingone of

themwouldeffectively halt the other untilthe first one is finished

(soyoucan’t distributecomputingpower amongdifferent tasks).

It also makes the applicationreact withdelays to events.Further-

more the code is difficult to read and analyze, therefore this so-

lution is only suited for short and simple problems that are to be

processedin a single thread, suchas splashscreens and the mon-

itoring of short operations.

Using a Worker Thread

A different solution is to avoid blocking the main event loop by

performinglongoperationsinaseparatethread.This isespecially

useful if the task is performedby athirdparty library inablocking

fashion. Insuchasituationit might not be possible to interrupt it

to let the GUI process pending events.

One way to perform an operation in a separate thread that

gives you most control over the process is to use QThread. You

can either subclass it and reimplement its run() method, or call
QThread::exec() tostart the thread’sevent loop,or both:subclass

and, somewhere in the run() method, call exec(). You can then

use signalsandslots to communicatewiththe mainthread—just

remember that you have to be sure that QueuedConnection will be

usedor else threadsmay losestability andcauseyour application

to crash.

There are many examplesof usingthreads inboththe Qt refer-

ence documentationandonline materials, so we won’t make our

ownimplementation,butinsteadconcentrateonotherinteresting

aspects.

Waiting in a Local Event Loop

The next solution I would like to describe deals with waiting un-

til an asynchronous task is completed. Here, I will show you how

to block the flow until a network operation is completedwithout

blockingevent processing.What we coulddo is essentially some-

thing like this:

task.start();

while (!task.isFinished())

 QCoreApplication::processEvents();

This is called busy waiting or spinning—constantly checking a

condition until it is met. In most cases this is a bad idea, it tends

to eat allyour CPUpower andhas allthedisadvantagesof manual

event processing.

Fortunately,Qt has aclass to helpus withthe task:QEventLoop is

the same class that the applicationand modal dialogs use inside

their exec() calls. Each instance of this class is connected to the

mainevent dispatchingmechanismand, whenits exec() method

is invoked, it starts processingevents untilyoutell it to stop using
quit().

We can use the mechanism to turn asynchronous operations

into synchronous ones using signals and slots—we can start a

local event loop and tell it to exit when it sees a particular signal

from a particular object:

QNetworkAccessManager manager;

QEventLoop q;

QTimer tT;

tT.setSingleShot(true);

connect(&tT, SIGNAL(timeout()), &q, SLOT(quit()));

connect(&manager, SIGNAL(finished(QNetworkReply*)),

 &q, SLOT(quit()));

QNetworkReply *reply = manager.get(QNetworkRequest(

 QUrl("http://www.qtcentre.org")));

tT.start(5000); // 5s timeout

q.exec();

if(tT.isActive()){

 // download complete

 tT.stop();

} else {

 // timeout

}

We use one of the new additions to Qt—a network access

manager—to fetch a remote URL. As it works in an asynchronous

fashion,wecreatealocalevent looptowait for afinished() signal

from the downloader. Furthermore, we instantiate a timer that

willterminatetheevent loopafter fivesecondsincasesomething

goeswrong.After connectingappropriatesignals,submittingthe

request and starting the timer we enter the newly created event

loop. The call to exec() will return either when the download is

complete or five seconds have elapsed (whichever comes first).

We find out which is the case by checking if the timer is still run-

ning. Then we can process the results or tell the user that the

download has failed.

We should note two more things here. Firstly, that a similar

approachis implementedinaQxtSignalWaiter class that is part of

the libqxt project (http://www.libqxt.org). Another thing is that,

for some operations, Qt provides a family of “wait for” methods

(for example QIODevice::waitForBytesWritten()) that will do

more or less the same as the snippet above but without running

an event loop. However, the “wait for” solutions will freeze the

GUI because they do not run their own event loops.

Solving a Problem Step by Step

If you can divide your problem into subproblems then there is

a nice path you can take to perform the computation without

blockingthe GUI. You can perform the task in short steps that will

not obstruct event processing for longer periods of time. Start

processing and, when you notice you have spent some defined

time onthe task, save its state andreturnto the event loop. There

needs to be a way to ask Qt to continue your task after it is done

with events.

Fortunately there is such a way, or even two. One of them is

to use a timer with an interval set to zero. This special value will

cause Qt to emit the timeout signal on behalf of the timer once

its event loop becomes idle. If you connect to this signal with

a slot, you will get a mechanism of calling functions when the

applicationis not busy doing other things (similar to how screen

savers work). Here is an example of finding prime numbers in

the background:

class FindPrimes : public QObject

{

 Q_OBJECT

public:

 FindPrimes(QObject *parent = 0) : QObject(){}

public slots:

 void start(qlonglong _max);

private slots:

 void calculate();

signals:

 void prime(qlonglong);

 void finished();

http://www.libqxt.org

Issue 27 Qt Quarterly5

private:

 qlonglong cand, max, curr;

 double sqrt;

 void next(){ cand+=2; curr = 3; sqrt = ::sqrt(cand);}

};

void FindPrimes::start(qlonglong _max)

{

 emit prime(1); emit prime(2); emit prime(3);

 max = _max; cand = 3; curr = 3;

 next();

 QTimer::singleShot(0, this, SLOT(calculate()));

}

void FindPrimes::calculate()

{

 QTime t;

 t.start();

 while (t.elapsed() < 150) {

 if (cand > max) {

 emit finished(); // end

 return;

 }

 if (curr > sqrt) {

 emit prime(cand); // prime

 next();

 } else if (cand % curr == 0)

 next(); // not prime

 else

 curr += 2; // check next divisor

 }

 QTimer::singleShot(0, this, SLOT(calculate()));

}

The FindPrimes class makes use of two features—it holds its cur-

rent calculationstate (cand and curr variables) so that it can con-

tinue calculations where it left off, and it monitors (by the use of
QTime::elapsed()) how long it has been performing the current

step of the task. If the time exceeds a predefined amount, it re-

turns to the event loop but, before doing so, it starts a single-

shot timer that will call the method again(youmight call this ap-

proach “deferred recurrency”).

I mentioned there were two possibilities of doing a task in

steps. The second one is to use QMetaObject::invokeMethod() in-

stead of timers. This method allows you to call any slot from any

object. One thing that needs to be said is that, for this to work

in our case, we need to make sure the call is made using the
Qt::QueuedConnection connectiontype, so that the slot is called in

an asynchronousway (by default, slot calls withina single thread

are synchronous). Therefore we might substitute the timer call

with the following:

QMetaObject::invokeMethod(this, "calculate",

 Qt::QueuedConnection);

The advantage of this over using timers is that you can pass

arguments to the slot (for example,passingit the current stateof

a calculation). Apart from that the two methods are equivalent.

Parallel Programming

Finally, there is the situationwhere you have to performa similar

operation on a set of data—for instance, creating thumbnails

of pictures from a directory. A trivial implementationwould look

like this:

QList<QImage> images = loadImages(directory);

QList<QImage> thumbnails;

foreach (const QImage &image, images) {

 thumbnails << image.scaled(QSize(300,300),

 Qt::KeepAspectRatio, Qt::SmoothTransformation);

 QCoreApplication::sendPostedEvents();

}

A disadvantage of such an approach is that creating a thumbnail

of asingle image might take quite long, andfor that time the GUI

would still be frozen. A better approach would be to perform the

operation in a separate thread:

QList<QImage> images = loadImages(directory);

ThumbThread *thread = new ThumbThread;

connect(thread, SIGNAL(finished(QList<QImage>)),

 this, SLOT(showThumbnails(QList<QImage>)));

thread->start(images);

Thissolutionisperfectlyfine,but it doesn’t takeintoconsideration

that computer systems are evolving in a different direction than

five or ten years ago—instead of having faster and faster pro-

cessingunits they are beingequippedwith multiple slower units

(multicore or multiprocessor systems) that together offer more

computingcycles with lower power consumptionandheat emis-

sion. Unfortunately, the above algorithm uses only one thread

and is thus executed on a single processing unit, which results in

slower execution on multicore systems than on single core ones

(becauseasinglecoreinmulticoresystemsisslower thaninsingle

core ones).

To overcome this weakness, we must enter the world of paral-

lel programming—we divide the work to be done into as many

threads as we have processing units available. Starting with Qt

4.4, there are extensions available to let us do parallel program-

ming: these are provided by QThreadPool andQt Concurrent.

The first possible course of action is to use so called

runnables—simple classes whose instances can be executed by

a thread. Qt implements runnables through its QRunnable class.

Youcanimplement your ownrunnablebasedonthe interface of-

fered by QRunnable and execute it usinganother entity offeredby

Qt. I mean a thread pool—anobject that can spawn a number of

threadsthat executearbitrary jobs. If thenumber of jobsexceeds

the number of available threads, jobs willbe queuedandexecut-

ed when a thread becomes available.

Let’s go back to our example and implement a runnable that

would create an image thumbnail using a thread pool.

class ThumbRunnable : public QRunnable {

public:

 ThumbRunnable(...) : QRunnable(), ... {}

 void run(){ m_result = m_image.scaled(...); }

 const QImage &result() const{ return m_result; }

};

QList<ThumbRunnable *> runnables;

foreach(const QImage &image, images){

 ThumbRunnable *r = new ThumbRunnable(image, ...);

 r->setAutoDelete(false);

 QThreadPool::globalInstance()->start(r);

 runnables << r;

}

Basically, everything that needs to be done is to implement the
run() method from QRunnable. It is done the same way as sub-

classingQThread, the only difference is that the job is not tied to a

thread it creates and thus can be invoked by any existing thread.

After creatinganinstanceof ThumbRunnable we make sure it won’t

be deleted by the thread pool after job execution is complet-

ed. We need to to that because we want to fetch the result from

the object. Finally, we ask the thread pool to queue the job using

the global thread pool available for each applicationand add the

runnable to a list for future reference.

Wethenhavetoperiodicallycheck eachrunnabletoseeif itsre-

sult is available,whichis boringandtroublesome,but fortunately

there is abetter approachwhenyouneedto fetcharesult.Qt Con-

current introducesanumber of paradigmsthat canbe invokedto

perform SIMD (Single Instruction Multiple Data) operations. Here

we will take a look only at one of them, the simplest one that lets

usprocesseachelement of acontainer andhavetheresultsready

in another container.

6 Qt Quarterly

typedef QFutureWatcher<QImage> ImageWatcher;

QImage makeThumb(const QString &img)

{

 return QImage(img).scaled(QSize(300,300), ...);

}

QStringList images = imageEntries(directory);

ImageWatcher *watcher = new ImageWatcher(this);

connect(watcher, SIGNAL(progressValueChanged(int)),

 progressBar, SLOT(setValue(int)));

QFuture<QImage> result

 = QtConcurrent::mapped(images, makeThumb);

watcher->setFuture(result);

Easy, isn’t it? Just a few lines of code and the watcher will inform

us of the state of the SIMD program held in the QFuture object. It

will even let us cancel, pause and resume the program. Here, we

usedthesimplest possiblevariant of thecall—usingastandalone

function. In a real situation you would use something more so-

phisticated than a simple function—Qt Concurrent lets you use

functions, class methods and function objects. Third party solu-

tions allow youto further extendthe possibilitiesby usingbound

function arguments.

Conclusion

I have shown you a whole spread of solutions based on type and

complexity of problem related to performing time consuming

operations in Qt-basedprograms. Remember that these are only

the basics—you can build upon them, for example by creating

your own “modal” objects using local event loops, swift data

processors using parallel programming, or generic job runners

using thread pools. For simple cases, there are ways to manually

request the application to process pending events, and for more

complex onesdividingthe task intosmaller subtaskscouldbethe

right direction.

Youcandownloadcomplete examples that use techniques de-

scribedin this article fromtheQt Quarterly Web site. If youwould

like to discuss your solutions, work together with others to solve

a problem that’s bothering you, or simply spend some time with

other Qt (cute?) developers, you can always reach me and others

willing to share their knowledge at http://www.qtcentre.org.

Never again let your GUI get frozen!

Witold Wysota is one of the administrators of Qt-

Centre and a PhD student at Warsaw University of

Technology where he gives lectures onQt.Whennot

dealing with Qt he can be found practicing tradi-

tional kung-fu or exploring the Universe with his

brand new 150/1200 Newton telescope.

Qt Quarterly is published by Nokia Corporation, Oslo, Norway.

Copyright  2008 by Nokia Corporation or original authors.

Authors: Johan Thelin, Witold Wysota, Thomas Zander.

Contributors: Morten Sørvig.

Production: Katherine Barrios.

Editor: David Boddie.

A selection of Qt Quarterly’s articles and source code is avail-

able from http://doc.trolltech.com/qq/. Potential contributors

should contact the editors at qq@trolltech.com.

Nopart of thisnewslettermay be reproduced, inany formor by any

means, without permission in writing from the copyright holder.

Nokia, Qt andtheir respective logos are trademarks of NokiaCorpo-

ration in Finland and/or other countries worldwide. All other prod-

ucts namedare trademarks of their respective owners. Producedin

Norway.

The Panel Stack Pattern

When reading about Qt for Embedded Linux, many examples

seen in the online press are related to media gizmos,

mobile phones andother graphics-intensiveapplications.One

common, but less discussed application is in control panels,

used for home automation, industrial machinery and alarm

systems.

The typical control panel does not feature a windowed interface.

It does not runmultipleuser applicationsat once.They generally

do not feature a full sized keyboard. Instead a touch screen or a

very basic set of buttons is used.

In this article, I willpresent a basic patternthat I’ve beenusing

when implementing this type of applications. I call it a pattern

because each of these systems that I’ve come across has its own

peculiarities and it is hard to make them all in one mould.

The Stack

All these systems are based around full screen dialogs—I choose

to call these panels. Most of these panels are fairly static and can

thus be created at start-up. To avoid having to create them all

at once, the singleton pattern can be used. This postpones the

creation of panels until they are first used, but prevents them

from being created more than once.

We will wait just a few moments with this code as there is

one important buildingblock that forms the basis of the pattern:

the panel stack. All panels are kept in a QStackedWidget. This stack

of panels is kept in a widget that acts as the application’s “main

window”. As there can be only one main window, this is a single-

ton class and it is called the PanelStack. The panel stack holds all

thepanelsandletsyoushow eachoneof theminturnby referring

to the index that you get when you add it to the stack.

class PanelStack : public QWidget

{

 Q_OBJECT

public:

 static PanelStack *instance();

 int addPanel(AbstractPanel *);

 void showPanel(int);

private:

 ...

};

So,eachpanelisactuallyanimplementationof AbstractPanel,and

almost all panels are singletons.The idea is that, the first time an

instance of apanel is called, it adds itself to the panelstack. Then,

eachpanelprovides amethodcalledshowPanel(). It initializes the

panel and tells the panel stack to show it. This means that each

panel keeps its own index, and all that you need to know when

implementingyour application is that you call showPanel() in the

panel that you want to show.

class AbstractPanel : public QWidget

{

protected:

 AbstractPanel(QWidget *parent = 0);

 void addPanelToStack();

 int panelIndex() const;

private:

 ...

};

The actual singleton implementation is made in each subclass

of AbstractPanel. That is also where the showPanel() method is

added. I have left out a virtual showPanel() method, as different

panels need different arguments when being initialized.

http://www.qtcentre.org

Issue 27 Qt Quarterly7

An Example

Let’s continueby lookingat anexample. Inthis case,aVCR control

panel. It consists of four panels: the main menu, the live panel

(holding the play, pause and stop buttons), the recordings panel

(allowing the user to manage schedules for recording), and

finally, the recording details panel (letting the user configure a

given schedule for recording).

Each of these panels will be designed using Qt Designer and

their interface will look very much the same. We will focus on

the RecordingsPanel widget in this article. The entire example is

available for download from the Qt Quarterly Web site.

Before we continue, a short word about keeping data away from

the user interfacecode.We usearecordingsclass inparallelto the

panelclasses shownhere andthe panelstack class. This allows all

panels to access the data independently of each other.

In this trivial example, we use a QStringList to keep all the

recordings, but in a real world application this would most prob-

ably be a singleton, possibly coupledwith a QAbstractModel inter-

face. We start by declaring the class as a singleton and providing

the showPanel() method. In this case, the panel always shows all

recordings, so there is no need for arguments.

class RecordingsPanel : public AbstractPanel

{

public:

 static RecordingsPanel *instance();

 void showPanel();

 ...

private:

 RecordingsPanel();

 static RecordingsPanel *m_instance;

 ...

};

The implementation follows. Notice that the implementation

methodadds thepanelto thestack.This is toallow theaddPanel()

method to use methods, signals and slots of the actual class be-

ing implementedandnot the base class. If the addPanelToStack()

call had been made from the AbstractPanel’s constructor, the vir-

tual methods, signals and slots wouldhave been those of the Ab-

stractPanel and not of the RecordingsPanel.

RecordingsPanel *RecordingsPanel::m_instance = 0;

RecordingsPanel *RecordingsPanel::instance()

{

 if (!m_instance)

 {

 m_instance = new RecordingsPanel();

 m_instance->addPanelToStack();

 }

 return m_instance;

}

void RecordingsPanel::showPanel()

{

 PanelStack::instance()->showPanel(panelIndex());

}

The singletonpattern,as shownabove, is usedfor allpanels.Now

looking at the panel itself (in the image opposite) you can see

that this panel consists of a list of recordings and four buttons.

Each of these buttons has a correspondingslot.

class RecordingsPanel : public AbstractPanel

{

public:

 static RecordingsPanel *instance();

 void showPanel();

private slots:

 void addClicked();

 void editClicked();

 void removeClicked();

 void backClicked();

};

The slots leading to navigation between panels are add(), edit()

and back(). The Remove Recording button simply removes a

recording from the list, but keeps showing the list.

The Back button asks the main menu to show itself using the
showPanel() method, while the Add Recording and Edit Record-

ingbuttons pass onthe recording’s index to the recordingdetails

panel.For new recordings,anindex of -1ispassedto indicatethat

a new recording is to be created.

void RecordingsPanel::addClicked()

{

 RecordingDetailsPanel::instance()->showPanel(-1);

}

void RecordingsPanel::editClicked()

{

 RecordingDetailsPanel::instance()->showPanel(

 ui.recordingsList->currentRow());

}

void RecordingsPanel::backClicked()

{

 MainMenu::instance()->showPanel();

}

In the RecordingDetailsPanel class, the showPanel() methodlooks

at then initializes the user interface accordingly.

void RecordingDetailsPanel::showPanel(int recordIndex)

{

 m_currentIndex = recordIndex;

 if (m_currentIndex == -1)

 ui.lineEdit->setText("");

 else

 ui.lineEdit->setText(recordings[m_currentIndex]);

 PanelStack::instance()->showPanel(panelIndex());

}

The implementationof the panelstack to handle this case is fair-

ly trivial. The widget more or less wraps a QStackedWidget. When

addingapanelto the PanelStack, it adds the panelto its QStacked-

Widget and returns the relevant index.

int PanelStack::addPanel(AbstractPanel *panel)

{

 return m_panelStack->addWidget(panel);

}

In a similiar fashion, the showPanel() method simply changes the

currently shown widget in the stacked widget.

void PanelStack::showPanel(int index)

{

 m_panelStack->setCurrentIndex(index);

}

Just wrapping a widget in another widget is not a good way

to move forward. However, if we add some functionality to the

panel stack we can start to make some gains. We’ll examine one

way to do this in the next section.

8 Qt Quarterly

Keeping History in the Stack

In the previous example, we built a set of panels that are navi-

gated according to a static pattern. Clicking Back when in the

recordings panel always leads to the main menu, and so on. This

is allvery well inmost smallsystems,but it means that we cannot

reuse panels in different places in the navigationtree.

To avoid this problem, we can keep the navigation history in

the panel stack. Each time a panel is shown, its index is added to

a history stack. Instead of moving to the parent when leaving, a
back() method is added to the panel stack. This moves one step

back inthehistory stack untilthe first panelis encountered.Inthe

true spirit of the Web browser metaphor, a home() method is also

added. It takes us all the way to the first panel in one simple call.

Panelreuse is one of the benefitsof usingthis pattern.Another

benefit is that the source code dependencies are reduced: each

panelonly needs to know of the panelstack andthe panels locat-

eddeeper inthenavigationtrees.Theparent panelsarenolonger

important. Finally, we make the back() andhome() methods slots,

thus removing the need for those slots in the panels.

class PanelStack : public QWidget

{

 ...

 int addPanel(AbstractPanel *);

 void showPanel(int);

public slots:

 void back();

 void home();

private:

 ...

};

The changes that we needto make involvecreatingthe m_history

stack and pushing indexes onto it when showPanel() is called.

When back() is called, we pop one index off, and when home() is

called we pop all but one index off it.

void PanelStack::showPanel(int index)

{

 m_history.push(index);

 showTopPanel();

}

void PanelStack::back()

{

 if (m_history.count() <= 1)

 return; // Cannot go back past the first panel.

 m_history.pop();

 showTopPanel();

}

void PanelStack::home()

{

 if (m_history.count() <= 1) // Either already home

 return; // or there are no panels to return to.

 while (m_history.count() > 1)

 m_history.pop();

 showTopPanel();

}

This designforces a rule on the user—the first panelshownis the

menu and you cannot pop the history beyond that. As you can

see, the home(), back() and showPanel() methods do not update

the widget stack themselves.Insteadthey calltheshowTopPanel()

method. This is a private method that takes care of the details.

void PanelStack::showTopPanel()

{

 m_panelStack->setCurrentIndex(m_history.top());

 dynamic_cast<AbstractPanel*>(m_panelStack->widget(

 m_history.top()))->enterPanel();

}

It not only shows the right panel, but it calls the enterPan-

el() method of that panel. The enterPanel() method is a virtual

methodaddedto the AbstractPanel class. The default implemen-

tation is a dummy one that does nothing.

The idea here is that a panel can appear both as a result of its
showPanel() method being called and from a panel stack event,

resulting from a call to home() or back(). In the latter case the

panel needs to know that it is about to be shown so that it can

update its contents. For example, the recordings panel updates

its list of recordings here.

Pulling Apart the Stack

We now have a method that we know is called every time a new

panel is about to be shown. So, why not use it to update some

common parts of the user interface. For instance, if a title bar is

a part of every panel, why not place it in the panel stack and add

a virtual method called titleText() to each abstract panel?

class AbstractPanel : public QWidget

{

public:

 virtual void enterPanel() {}

 virtual QString titleText() const = 0;

 ...

};

A small change to the panel stack updates the m_titleLabel label

each time a new panel is changed.

void PanelStack::showTopPanel()

{

 m_panelStack->setCurrentIndex(m_history.top());

 AbstractPanel *panel = dynamic_cast<AbstractPanel*>(

 m_panelStack->widget(m_history.top()));

 panel->enterPanel();

 m_titleLabel->setText(panel->titleText());

}

Therearenumerousother elementsthat canbeaddedtothepan-

elstack toformacommoninfrastructure.If nothingelse,Back and

Home buttons,andperhaps acouple of shortcut buttons leading

to specific forms. The buttons can then be hidden and shown by

addingvirtualmethodssuchashasBack() andhasHome() to theAb-

stractPanel class.

More through the Stack

The stacked approach does not only allow for the transfer of

information from the panels to the stack. It can work the other

way around, too. This is very helpful when dealing with systems

with rudimentary control methods.

For example, implementing a keyboard plugin for a keypad

consisting of four buttons placed next to the screen can feel like

an overkill solution. Instead, one can intercept the events in the

panelstack and, fromthat stack,pass the events onto the current

panel through a set of virtual methods. A custom solution, yes,

but as you are probably dealing with custom hardware that is

only to be expected.

I have foundthe panelstack approachuseful in numerous cus-

tomer cases and it always performs well while being flexible and

adaptable to application-specific requirements. I hope youfindit

to be a useful way to think about embedded user interfaces.

Johan Thelin is the author of the Foundations of

Qt Development book available from Apress and

has a soft spot for embedded systems. He is also

involved in the QtCentre and works as a consultant

for BitSim AB.

Issue 27 Qt Quarterly9

Poppler: Displaying PDF Files with Qt

As we saw earlier in this issue, Qt can be used to generate

documents in an ever expanding range of formats that can

be viewed and edited with external applications. Qt also

comes with facilities to display HTML “out of the box”, and

can generate its own print previews, but what about files that

originate outside Qt applications?

Fortunately, there are third party libraries available for some

of the things that Qt doesn’t provide. One of these is Poppler, a

Portable Document Format (PDF) rendering library that forms

the basis of a number of widely-used PDF viewing applications.

Poppler is a fork of the Xpdf PDF viewer that is licensed under

the GNU General Public License. Xpdf can also be obtained under

other licensing terms.

Poppler is designed in a way that allows it to be used with any

toolkit or framework as long as a suitable rendering backend is

available. Qt applicationdevelopers are fortunate in that there is

also a Qt frontend available—aset of Qt-style classes that use Qt

classes to describe parts of PDF documents.

In this article, we’ll take a brief look at some of the features pro-

vided by Poppler in the context of creating a simple PDF viewing

application.

Setting Things Up

Developers using Linux should find that Poppler and the Qt 4

frontend are available as a package for most recent distribu-

tions.DevelopersonWindows,Mac OSX,andother Unix platforms

can download source code from the poppler.freedesktop.org

Web site.

By default,Poppler is built withallkinds of frontendsandback-

ends. If you compile Poppler from source, you can exclude some

of these to save compile time. When configuring the build, it

may be easier to set the installationprefix to that used for the Qt

installation—this prefix is the directory under which subdirecto-

ries containingexecutables, libraries and data files are stored.

It is important to know where the Poppler library and header

files will be installed because our example will need them.

Rendering Documents

In our example, we provide asimple user interface to display PDF

files, displaying a single page at a time and providing controls

to let the user move between pages. Each page is displayed in

a custom widget, DocumentWidget, held in the main window’s

central widget, a scroll area.

The user opens a new file via a file dialog, which we open

in response to an action being triggered. The path to the file is

passed to the DocumentWidget so that the document it contains

can be fed to the Poppler library.

Unlike withmany Qt classes,we loadadocument usingastatic

function in the followingway:

Poppler::Document *doc = Poppler::Document::load(path);

If the document returned is not null, we have a document that

we can explore. Note that our example takes ownership of the

document, so we must remember to dispose of it when we have

finished with it.

Eachdocument containsaseriesof pages that canbe obtained

one by one using the Document::page() function. Although the
Document class has a collectionof functions to control the appear-

anceof thedocument,actualrenderingisperformedby eachPage

object. In our example, we render pages into QImage objects that

we display using the DocumentWidget, itself just a simple QLabel

subclass.

The key part of our DocumentWidget::showPage() function looks

like this:

void DocumentWidget::showPage(int page)

{

 QImage image = doc->page(currentPage)->renderToImage(

 scaleFactor * physicalDpiX(),

 scaleFactor * physicalDpiY());

 ...

 setPixmap(QPixmap::fromImage(image));

}

In the above code we pass the resolution of the image to be

created, multipliedby a scale factor that the user controls via the

example’s user interface. We have to be careful with the range

of scale factors available because it is easy to request extremely

large images. In practice, we restrict the user’s choice to a set of

predefined scale factors.

Searching for Text

One of themany usefulfeaturesthat Poppler provides is theabili-

ty to locatespecific text strings inPDF documents.SincePDF is de-

signedto storeprintablerather thaneditabledocuments, it is not

always easy to easily access andreconstruct the author’s original

text. However, Poppler does a good job of locating text in many

documents, and we can expose this feature in our example.

TheAPI for locatingtext providesconventionalfeaturessuchas

case-insensitiveanddirectionalsearching,but also returns infor-

mationabout the positionof any locatedtext onthe page—since

PDF is a display format, this is really the only useful information

about the text we can obtain. This informationcan be used to in-

dicate where any subsequent searches should begin.

Basically, the code to perform a forward search in a given page

looks like this:

bool found = page->search(text, searchLocation,

 Poppler::Page::NextResult,

 Poppler::Page::CaseInsensitive);

Here, searchLocation is a QRectF object that indicates where the

search should start from on the given page. Initially, when we

performasearch,we just passadefault constructedQRectF object

to start from the page origin.

The rectangle we obtain from the Page::search() function can

be used when we render the page to highlight the located text

andscrollthe view to make sure it is visible.However, the position

and dimensions of the rectangle are given in points (1 inch =

72 points), so we need to transform the rectangle to cover the

correct area on-screen.

Searching through a document for a piece of text is slightly

more involvedthan just a single functioncall. We’ll look at this in

more detail later.

poppler.freedesktop.org

10 Qt Quarterly

Extracting Text

Since the mapping between the author’s original text and its

locationon-screenmay bepurely visual, it is difficult toautomate

the extraction of text from PDF files, though there are tools that

try very hard to achieve this.

Many document viewers let the user select and export text by

making them select a region on-screen, giving the application

something to work with, and Poppler supports this approach by

providing a function that returns a string for a given rectangle

that we call like this:

QString text = doc->page(currentPage)->text(selectedRect);

The method we use is somewhat different to this. We’ll cover it

in more detail later.

The Example in More Detail

Having covered the basics of displaying pages, searching, and

extracting text from documents, let’s take a closer look at how

our example uses these features.

We provide two functions to search for text strings supplied

by the user via the user interface. For forwards searching, we

start by lookingfor strings on the current page, beginningat the

current search location, then try each following page until the

end of the document.

QRectF DocumentWidget::searchForwards(const QString &text)

{

 int page = currentPage;

 while (page < doc->numPages()) {

 if (doc->page(page)->search(text, searchLocation,

 Poppler::Page::NextResult,

 Poppler::Page::CaseInsensitive)) {

 if (!searchLocation.isNull()) {

 showPage(page + 1);

 return searchLocation;

 }

 }

 page += 1;

 searchLocation = QRectF();

 }

If we reach the end of the document without finding anything,

we search from the beginninguntil we reach the current page.

page = 0;

 while (page < currentPage) {

 searchLocation = QRectF();

 if (doc->page(page)->search(text, searchLocation,

 Poppler::Page::NextResult,

 Poppler::Page::CaseInsensitive)) {

 if (!searchLocation.isNull()) {

 showPage(page + 1);

 return searchLocation;

 }

 }

 page += 1;

 }

 return QRectF();

}

Aswellas renderingpagesat different scales,asshownearlier,we

wouldliketohighlight theresultsof searches.Todothis,weinsert

somecode to paint onthe imageobtainedfromthe current page,

using a matrix to map the rectangle onto the image.

QMatrix DocumentWidget::matrix() const

{

 return QMatrix(scaleFactor * physicalDpiX() / 72.0, 0,

 0, scaleFactor * physicalDpiY() / 72.0,

 0, 0);

}

void DocumentWidget::showPage(int page)

{

 ...

 QImage image = doc->page(currentPage)->renderToImage(

 scaleFactor * physicalDpiX(),

 scaleFactor * physicalDpiY());

 if (!searchLocation.isEmpty()) {

 QRect highlightRect = matrix().mapRect(

 searchLocation).toRect();

 highlightRect.adjust(-2, -2, 2, 2);

 QImage highlight = image.copy(highlightRect);

 QPainter painter;

 painter.begin(&image);

 painter.fillRect(image.rect(),

 QColor(0, 0, 0, 32));

 painter.drawImage(highlightRect, highlight);

 painter.end();

 }

 setPixmap(QPixmap::fromImage(image));

}

The result of this additional effort is shown in the following

image—the located text is displayed normally while the rest of

the page is slightly darker.

In our example, we allow the user to draw a selection onto the

page by reimplementingthree of the mouse event handler func-

tions in our DocumentWidget. In these we maintain a QRubberBand

object to keep track of the area selected, following the pattern

shown in the QRubberBand documentation.

The mouse releaseevent handler is where we start the process

of selecting text:

void DocumentWidget::mouseReleaseEvent(QMouseEvent *)

{

 ...

 if (!rubberBand->size().isEmpty()) {

 QRectF rect = QRectF(rubberBand->pos(),

 rubberBand->size());

 rect.moveLeft(rect.left() -

 (width() - pixmap()->width()) / 2.0);

 rect.moveTop(rect.top() -

 (height() - pixmap()->height()) / 2.0);

 selectedText(rect);

 }

 rubberBand->hide();

}

When the user releases the mouse button, we create a rectangle

with coordinates relative to the top-left corner of the image

within the label, and we pass this to the selectedText() function

which is responsible for informing the rest of the application

about any text it finds.

As noted earlier, the Poppler Page class provides a function to

return text withina rectangle in a document. However, inselect-

edText(), we use a more convoluted method to show how much

information we can obtain about a document.

Issue 27 Qt Quarterly11

We begin by mapping the selection rectangle onto the page,

using the inverse of the matrix we used to highlight search

results, before obtaining a list of TextBox objects, each of which

describes a piece of text on the page.

void DocumentWidget::selectedText(const QRectF &rect)

{

 QRectF selectedRect = matrix().inverted()

 .mapRect(rect);

 QString text;

 bool hadSpace = false;

 QPointF center;

 foreach (Poppler::TextBox *box,

 doc->page(currentPage)->textList()) {

 if (selectedRect.intersects(box->boundingBox())) {

 if (hadSpace)

 text += " ";

 if (!text.isEmpty() &&

 box->boundingBox().top() > center.y())

 text += "\n";

 text += box->text();

 hadSpace = box->hasSpaceAfter();

 center = box->boundingBox().center();

 }

 }

 if (!text.isEmpty())

 emit textSelected(text);

}

We test whether each piece of text lies within the selection and

append it in a QString if it does. We also perform some elemen-

tary checks to see if we can cleverly insert newline characters in

appropriate places.

Note that, while we’re satisfied with obtaining whole pieces

of text (typically words in a sentence), recent versions of Poppler

allow the individual characters in TextBox objects to be located.

In the user interface, when the user selects some text, we dis-

play it in a text browser so that it can be copied and pasted

elsewhere.

Building the Example

The example is provided as a standard Qt project with a simple
pdfviewer.pro file. Because there is a certain amount of freedom

associated with where you can install the Poppler library and

header files on your system, you will need to modify this file to

use the correct paths.

OnUbuntu8.04withthe libpoppler-qt4-dev packageinstalled,

the appropriate paths are as follows:

INCLUDEPATH += /usr/include/poppler/qt4

LIBS += -L/usr/lib -lpoppler-qt4

Other Linux distributions may install these files in different

locations,anddevelopersonother platformsmay findit easier to

build the library alongside the example instead of installing it.

Other Features and Possible Improvements

Our PDF viewer example only uses the most basic features of the

Poppler library. Since many documents use features like encryp-

tion, slideshow transitions, tables of contents and annotations,

theviewerapplicationsthatusePopplertorenderdocumentsrely

on the library’s support for these features.

Poppler includes anumber of low levelfeatures that are useful

for the purpose of analysing PDF files. Access to the list of fonts

used in a document and the font data itself can be useful when

preparing documents for publication.

Access to the body of text inadocument is usefulto developers

looking to index documents for text mining and subsequent

analysis. However, as noted earlier, this might be of limited use

for some documents.A goodsummary of the issues surrounding

text extraction can be found on the followingpage:

http://www.glyphandcog.com/textext.html

Information that is not part of the visible document is also

available via the Poppler API. Annotations, scripts (typically writ-

ten in JavaScript) and the URLs for hyperlinks can all be obtained,

though it is up to the applicationdeveloper to present this infor-

mation in a meaningfulway.

Like Qt’s QPrinter class, Poppler is also able to write PostScript

files,sowecouldeasily addsupport for fileexport andconversion.

Recent versions alsosupport PDF output,andthis opens the door

to the use of the library for PDF manipulation. In fact, since the li-

brary allows us to examine documents without havingto display

pages, it is possible to write command line tools to handle docu-

ments, and a number of these are supplied with Poppler.

Finding Out More

Poppler is a hosted on freedesktop.org, a site dedicated to Free

and Open Source desktop projects:

http://poppler.freedesktop.org/

Poppler’sQt 4 frontendhas its owndocumentation,whichcanbe

obtained via the project’s Wiki:

http://freedesktop.org/wiki/Software/poppler

Popular PDF viewers which use Poppler include Okular and

Evince for the KDE and GNOME desktop environments:

http://okular.kde.org/

http://www.gnome.org/projects/evince/

The Xpdf application, from which Poppler is derived, can be

obtained from the followingWeb site:

http://www.foolabs.com/xpdf/

The source code for the example described in this article can be

obtained from the Qt Quarterly Web site.

David Boddie is a Senior Technical Writer at Nokia,

Qt Software in Oslo, Norway. He has a long-standing

love/hate relationship with document formats, and

PDF in particular.

http://www.glyphandcog.com/textext.html
http://poppler.freedesktop.org/
http://freedesktop.org/wiki/Software/poppler
http://okular.kde.org/
http://www.gnome.org/projects/evince/
http://www.foolabs.com/xpdf/

Qt News

Qt Eclipse Integration for Linux Open Sourced

Users of the Eclipse integrated development environment on

Linux can now obtain a version of the Qt Eclipse Integration

under the GNU General Public License (GPL) versions 2 and 3.

C++ and Java developers can use the integration to create,

build, debug and run Qt applications from within the Eclipse IDE.

This release now makes it possible for motivated developers to

study,modify, improveandredistributethe code that binds Qt,Qt

Jambi and Eclipse together.

More details can be found on the Qt Software Web site:

http://trolltech.com/developer/eclipse-integration

Qtopia Becomes Qt Extended

At the end of September, Qt Software renamed and relaunched

Qtopia with the release of Qt Extended 4.4. This release is more

than just a rebranded version of Qtopia, however, as it includes

several new features:

• A modular architecture for feature selection.

• An advanced touch-baseduser interface.

• An IP communications framework based on Telepathy for

Instant Messagingand presence.

• A unified inbox for email, SMS, MMS and IM, plus push IMAP

e-mail and other messagingenhancements.

• Qt UI Test, a tool for automated system tests of the target

device.

More information is available on the Qt Software Web site:

http://trolltech.com/about/news/qt-extended-4.4-released

New Web Site for Qt Software

With the transfer of Trolltechto Nokia, the trolltech.comWeb site

has been overhauled to reflect the updated Qt brand. One of the

main aims of the new site is to make it easier for visitors to find

resources quickly within a few clicks of the front page.

Most of the resources previously found on the site have been

migratedto the new site, andwe expect the new blendof oldand

new material to be the ideal starting point for all kinds of users

and developers with an interest in Qt.

Qt Quarterly Goes Digital

Qt Quarterly 27 is the first issue of the newsletter to be distribut-

ed purely in a digital format. Commercial licensees will receiveQt

Quarterly in PDF format, and HTML versions of articles from each

issue willbe made available to the generalpublic ontheQt Quar-

terly Web site at around the time of publication of the following

issue.

Printed copies of back issues continue to be available to cus-

tomers who missed them the first time round, though there are

now limitedcopiesof early issues.Customersshouldalready have

access to a range of back issues in PDF format via their support

and download areas on trolltech.com.

Qt Centre Foundation Established

Just before the summer the Qt Centre Foundation was estab-

lished in Warsaw, Poland, to formalize the organization behind

the largest onlinecommunity site for Qt. The foundingboardcon-

sistsof Jacek Piotrowski(president)andWitoldWysota(vice-pres-

ident), and is supported by a council comprising of Axel Jaeger,

Daniel Kish and Johan Thelin. The foundation works to promote

the use of Qt and open source software through Internet activi-

ties, competitions andother initiatives helpingthe creationof Qt

software.

The foundationwelcomesdonationsandother assistancethat

canallow themtocontinuebuildingandhelpingtheQt communi-

ty. For more information, visit http://foundation.qtcentre.orgor

contact foundation@qtcentre.org.

Coin3D 3.0.0 Released

Trolltech partner Kongsberg SIM has released Coin3D 3.0.0!

Coin3D is a high-level, retained-mode toolkit for effective 3D

graphicsdevelopment.Coin3DandQttogetherpresenttheeasiest

way to create powerful, cross-platform 3D applications.

UsingSoQt or Quarter (aset of GUI bindingsincludedinCoin3D)

you can display 3D graphics from Coin (the core 3D rendering li-

brary in Coin3D) as a QWidget.

Highlighted features and improvements in V3.0.0 are

1. Performance Profiling Kit

2. Z-buffer control

3. Improved support for shaders

4. New shadow node

5. Support for ScXML

The Performance Profiling Kit is intended for use during applica-

tion development to identify performance bottlenecks in Coin-

based applications.

For more informationabout Coin3D, includinga Coin3D andQt

tutorial, visit www.coin3d.org.

KOffice Moves Forward with ODF Support

A project aimed at improving the support for OpenDocument

Format (ODF) files in KOffice, the office suite for KDE, has released

the source code used to automate the tests that check correct

handling of files in this format.

Former Troll, Girish Ramakrishnan, and his colleagues at For-

wardBias Technologies have been working towards ODF reading

and writing support in the KWord word processor (itself based

on Qt’s Scribe text engine) by analysing existing tests, verifying

KWord’s behavior and automating the process for each test. The

work is described on the ForwardBias Technologies weblog:

http://blog.forwardbias.in/2008/05/kword-odf-support.html

http://blog.forwardbias.in/2008/10/kword-odf-lists.html

TheODF-Koffice project is sponsoredby the NLnet Foundation,

an organisationwith a focus on contributionto an open informa-

tion society. More informationabout the project can be found on

the followingpage:

http://www.nlnet.nl/project/odf-koffice/

Contact address: Nokia Norge AS, Sandakerveien 116, P.O. Box 4332, Nydalen, NO-0402 Oslo, Norway

http://trolltech.com/developer/eclipse-integration
http://trolltech.com/about/news/qt-extended-4.4-released
trolltech.com
trolltech.com
http://foundation.qtcentre.org
foundation@qtcentre.org
www.coin3d.org
http://blog.forwardbias.in/2008/05/kword-odf-support.html
http://blog.forwardbias.in/2008/10/kword-odf-lists.html
http://www.nlnet.nl/project/odf-koffice/

