
White Paper

Today’s computer users live and work in an interconnected world. They always have a network at
hand and expect their data to be available at all times wherever they are. The boundary between
desktop applications and the web is closing and hybrid applications, mixing the best of both worlds,
are starting to emerge.

With the Qt WebKit Integration and the QtNetwork module, you have all the tools that you need to
create your own hybrid applications by mixing JavaScript, style sheets, web content and Qt compo-
nents freely. Combined with the QtXmlPatterns module, you can download, transform and query XML
and present it in a hybrid web environment. This paper presents the features provided in the Qt
WebKit Integration, and discusses how you can use them to develop hybrid applications.

Qt Features for Hybrid Web/Native
Application Development

© 2008 Nokia Corporation and/or its subsidiaries. – Qt Features for Hybrid Web/Native Application Development – 1

Qt Features for Hybrid Web/Native Application Development
Today's computer users live and work in an interconnected world. They always have a network at
hand and expect their data to be available at all times wherever they are. The boundary between
desktop applications and the web is closing and hybrid applications, mixing the best of both worlds,
are starting to emerge.

With the Qt WebKit Integration and the QtNetwork module, you have all the tools that you need to
create your own hybrid applications by mixing JavaScript, style sheets, web content and Qt
components freely. Combined with the QtXmlPatterns module, you can download, transform and
query XML and present it in a hybrid web environment.

Features of the Qt WebKit Integration
One of the key components when mixing web and native applications is the web contents rendering
engine – QtWebKit. This module makes it easy to integrate the wide-spread WebKit engine into
your applications. The integration includes triggering JavaScript from C++, as well as integrating
C++ objects into a web page and interacting with those objects through JavaScript.

The WebKit engine can be seen as a fully fledged web browser engine. The highlights of this engine
are its modern rendering features:

 ACID3 compliance gives you proper standards-compliant rendering.

 CSS-based transformations makes it possible to scale, rotate, skew and translate page
elements through CSS.

 CSS-based animations let you make smooth transitions between different states. For
instance, elements can be made to fade in and out as the mouse cursor hovers over them.

 Support for the video-tag allows for embedding video contents easily. The video player uses
codecs available from the Phonon Multimedia framework (also a part of Qt).

 Full page zooming makes it possible to scale not only the font size, but the entire page
including images.

 NPAPI support to embed standard web browser plugins enabling third party media and
more.

 The SquirrelFish JavaScript engine offers one of the fastest JavaScript experiences
available.

A modern, capable HTML rendering engine is only one half of a hybrid application. The other half
is the interaction between the native application and the rendered contents. The Qt WebKit
integration offers all the pieces of such a puzzle.

 Embed Qt widgets into a web page using the object-tag. This lets your web page contain Qt
widgets along with native C++ code as part of the visual appearance of the page.

 Access Qt objects from the JavaScript. This allows you to insert C++ objects into the
JavaScript context, letting the web page's script interact directly with your data structures.

© 2008 Nokia Corporation and/or its subsidiaries. – Qt Features for Hybrid Web/Native Application Development – 2

 Trigger JavaScript from Qt. You can call JavaScript functions in their web page context
from your C++ code and trigger events in the web page.

 Shared client side storage. This gives you access to a database accessible both from
JavaScript and C++, making it possible to share large amounts of data easily even when
offline.

The Qt WebKit integration forms the base of all hybrid applications, but the key factor is getting the
native code and web contents to interact. Qt offers a number of techniques to interconnect the two
worlds, sharing events and data while sharing the screen as one homogeneous interface to the user.

Interacting With Embedded Qt Objects
There are two ways to embed Qt objects into a web page illustrated using the QWebView widget.
You can either add your objects to the JavaScript context of a page, or you can create a plugin that
makes it possible to place Qt widgets inside a web page using the object tag.

The latter is an easy way to start creating a hybrid application: simply put your widgets inside a web
page. When the widgets are in the page, their public slots will be exposed to JavaScript functions of
the page as ordinary functions.

To add a widget to a page, you need to tell your QWebPage object that the widget is available. This is
done by subclassing the QWebPluginFactory class and reimplementing the methods plugins and
create. The plugins method informs the web page of which plugins it makes available, while the
create method creates widgets on demand.

From the HTML making up the web page in question, the widgets are created using the object tag.
For instance, the following tag will attempt to create an instance of an application/x-qt-colorlabel
widget.

<object type="application/x-qt-colorlabel" width="50px" height="20px" id="label"
/>

To facilitate the creation of such a widget, we must enable plugins and tell QWebPage about the
plugin factory class. In the code below, the ColorLabelFactory creates instances of ColorLabel
widgets in in response to application/x-qt-colorlabel requests.

{

 ...

 QWebSettings::globalSettings()->

 setAttribute(QWebSettings::PluginsEnabled, true);

 webView->page()->setPluginFactory(new ColorLabelFactory(this));

 ...

}

© 2008 Nokia Corporation and/or its subsidiaries. – Qt Features for Hybrid Web/Native Application Development – 3

The ColorLabel widget exposes a public slot called changeColor(). This is automatically made
available to JavaScript in the web page. Adding a link to the HTML referring to the element makes
it possible to activate C++ functions in a simple way.

Change color!

To make it possible to push events in the other direction, you need to make your objects available
through the JavaScript document contexts. Using the addToJavaScriptWindowObject method
available from each QWebFrame of your QWebPage. This method allows you to add an object to the
JavaScript context with a name:

 webView->page()->mainFrame()->

 addToJavaScriptWindowObject("eventSource", new eventSource(this));

To connect a signal from the object you have just added, you need to inject a piece of JavaScript
into the web page context. This is done using the evaluateJavaScript method. The code below
connects the signal signalName from the eventSource object to the JavaScript function
destFunction. You can even pass arguments from the signal to the connected JavaScript function.

 webView->page()->mainFrame()->

 evaluateJavaScript("eventSource.signalName.connect(destFunction);");

If you want to add a Qt object to the JavaScript contents of pages viewed through a standard
browser, there is a signal to be aware of. Each time the JavaScript context is cleared, the frame
emits the javaScriptWindowObjectCleared signal. To ensure that your Qt object is available at
all times, you need to connect to this signal and make your addToJavaScriptWindowObject calls
there.

The Qt WebKit integration lets you create applications where the native C++ interacts with the
JavaScript context in a seamless manner. This is the foundation of powerful hybrid applications, and
Qt makes it easy.

© 2008 Nokia Corporation and/or its subsidiaries. – Qt Features for Hybrid Web/Native Application Development – 4

Using the Client Side Storage to Share Data
With HTML 5, the web standard moves closer to the desktop in the same way as the desktop has
started to integrate the web. One of the bigger changes in this direction is the introduction of client
side storage. This gives each origin (i.e. each web page context) a SQL capable database engine on
the client machine. This can be used to cache data locally, to reduce traffic and make the page
available off-line. It can also be used to store large quantities of data in a structured, searchable way.

The client side storage is available from JavaScript. The idea is to search the database from your
JavaScript code and generate the HTML from the search result. This is done using the
openDatabase and transaction functions. Assuming the database is present and filled, the
following snippet shows the idea.

db = openDatabase("TestDb ", "1.0", "Client side storage test", 200000);

db.transaction(function(tx) {

 tx.executeSql("SELECT id, text FROM Texts",

 [], function(tx, result) {

 for (var i = 0; i < result.rows.length; ++i) {

 var row = result.rows.item(i);

 processText(row['id'], row['text']);

 }

 }, function(tx, error) {

 alert('Failed to retrieve texts from the database - ' + error.message);

 return;

 });

 });

Using the Qt WebKit integration, you can access the same databases through Qt's SQL module. This
can be a very useful feature in a hybrid application. For example, the web page half of you
application can use exactly the same mechanism for keeping data as when sharing data with your
native application half.

To avoid security breaches, the client side databases are only accessible through JavaScript from the
right security origin. From your native C++ code you can access all security origins through the
static QWebSecurityOrigin::allOrigins method, or via the QWebFrame::securityOrigin
method.

Given an origin object, you can get access to a list of QWebDatabase objects through the databases
method. Each web database object has a fileName property that can be used to open the database
for access from the native code.

© 2008 Nokia Corporation and/or its subsidiaries. – Qt Features for Hybrid Web/Native Application Development – 5

QWebDatabase webdb = mySecurityOrigin.databases()[index];

QSqlDatabase sqldb = QSqlDatabase::addDatabase("QSQLITE", "webconnection");

sqldb.setDatabaseName(webdb.fileName());

if (sqldb.open()) {

 QStringList tables = sqldb.tables();

 ...

}

Combining this data sharing mechanism with the ability to connect events between the web and
your native application, makes it easy to blur the border between web and desktop.

Transforming the Web
Much of the data available through the web is not suitable for direct presentation. Examples are
news feeds, geo data and other application specific data formats. Qt’s networking module makes it
possible to download such data in an easy manner. Parsing the data and converting it into a suitable
format can then be handled by your custom code or, for instance, by the QtXmlPatterns module.
The latter is handy when the output format is expected to be XML, or if you want to display it in a
web page, XHTML.

In this section we will walk through the interesting parts of a small example downloading a news
feed, converting it from XML to XHTML using an XSL transform, before presenting it through a
QWebView as shown in figure 1.

Figure 1: A news feed from ArsTechnica shown as
XHTML using a QWebView.

© 2008 Nokia Corporation and/or its subsidiaries. – Qt Features for Hybrid Web/Native Application Development – 6

The QNetworkAccessManager class allows you to easily handle the interaction between a client
and a web server. It helps you handle details such as proxy and cache settings, but also cookies and
SSL/TSL sessions. All in all, it makes it easy for the average case – to upload or download data --
but allows you to handle complex sessions with logins, certificates, etc..

To download the news feed for our example, all we need to do is create a QNetworkAccessManager
and call its get method. The result is returned through the finished(QNetworkReply*) signal.

However, as you can tell from the source code below, the reply object is available from the moment
you make the request. This allows us to monitor the progress of the request by listening to the
downloadProgress(qint64,qint64) signal.

{

 ...

 QNetworkAccessManager *manager = new QNetworkAccessManager(this);

 connect(manager, SIGNAL(finished(QNetworkReply*)),

 this, SLOT(handleReply(QNetworkReply*)));

 connect(manager, SIGNAL(finished(QNetworkReply*)),

 m_progressBar, SLOT(hide()));

 QNetworkReply *reply = manager->get(QNetworkRequest(QUrl(feedUrl)));

 connect(reply, SIGNAL(downloadProgress(qint64, qint64)),

 this, SLOT(updateProgress(qint64,qint64)));

}

When the request is finished, the QNetworkReply object holds the entire reply. This reply needs
further processing before it can be presented to users. In the case of an XML news feed such as RSS
or ATOM, the processing can be done using an XSL transformation. In the case of this
transformation, we use convert each item-node into a XHTML table row, populating the columns
with the contents of the tags pubDate and title. This XSL template is part of a larger file containing
more rules and the rest of the XHTML tags surrounding the table data.
<xsl:template match="item">

<tr>

 <td><xsl:value-of select="pubDate"/></td>

 <td><xsl:value-of select="title"/></td>

</tr>

</xsl:template>

© 2008 Nokia Corporation and/or its subsidiaries. – Qt Features for Hybrid Web/Native Application Development – 7

The XSL query is combined with the reply given from the QNetworkReply object using a
QXmlQuery object. This objects lets us perform XQueries on our XML data, transforming it from
the news feed into XHTML. In the code below, the replyBuffer contains the reply from the
QNetworkReply. The queryFile is a QFile object with the XSL query and the resultBuffer is
a QIODevice wrapping the QByteArray result into an interface suitable for QXmlQuery. The
result is then displayed through the QWebView m_webView using the setHtml method.

{

 ...

 QXmlQuery qry(QXmlQuery::XSLT20);

 qry.setFocus(&replyBuffer);

 qry.setQuery(&queryFile);

 qry.evaluateTo(&resultBuffer);

 m_webView->setHtml(QString(result));

}

As you can see, Qt gives you all the tools that you need to easily download, process and display
data from the Web. The combination of QNetworkAccessManager, QXmlQuery and QWebView
forms a flexible flow from unformatted XML to data displayed on the screen. If your data is not
XML, you can still use the QXmlQuery by providing a QAbstractXmlNodeModel, modeling non-
XML data into XML nodes.

© 2008 Nokia Corporation and/or its subsidiaries. – Qt Features for Hybrid Web/Native Application Development – 8

Summary
By providing the means for seamless integration between native C++ objects and JavaScript, Qt is
the ideal platform for hybrid application development. The interaction between these two worlds is
not limited to sharing data. Just like data, events can be passed both ways too.

Hybrid applications have a number of attractive features. For instance, the user knows the web
metaphor and is used to working with it. As parts of the application is deployed over the web, it can
be updated without having to install anything on each user’s machine. Another benefit is the
separation of style from content using style sheets. Creating hybrid applications using Qt takes this
one step further – parts of your application are scripted, other parts consist of native code. The user
interface can comprise of code, generated widgets, HTML or CSS.

The combination of the Qt WebKit integration, QtNetwork and QtXmlPatterns lets you harness the
power of native code and the flexibility of HTML, CSS and JavaScript. These are the tools for
building the next generation of applications.

For more information on the Qt WebKit Integration, visit http://www.qtsoftware.com/products or
browse the Qt technical documentation at http://doc.trolltech.com/qtwebkit.html.

http://www.qtsoftware.com/products
http://doc.trolltech.com/qtwebkit.html

White PaperWhite Paper

© 2008 Nokia Corporation and/or its subsidiaries. Nokia, Qt and their respective logos are trademarks of Nokia Corporation in Finland and/or other countries worldwide. All other trademarks are property of their respective owners.

Oslo, Norway +47 21 60 48 00 Redwood City, CA, USA +1 650-551-1676 Beijing, China +86 10 6588 8836 qt-info@nokia.com www.qtsoftware.com

About Qt Software:
Qt Software (formerly Trolltech) is a global leader in cross-platform application frameworks. Nokia acquired
Trolltech in June 2008, renamed it to Qt Software as a group within Nokia. Qt allows open source and com-
mercial customers to code less, create more and deploy everywhere. Qt enables developers to build innovative
services and applications once and then extend the innovation across all major desktop, mobile and other
embedded platforms without rewriting the code. Qt is also used by multiple leading consumer electronics ven-
dors to create advanced user interfaces for Linux devices. Qt underpins Nokia strategy to develop a wide range
of products and experiences that people can fall in love with.

About Nokia
Nokia is the world leader in mobility, driving the transformation and growth of the converging Internet and
communications industries. We make a wide range of mobile devices with services and software that enable
people to experience music, navigation, video, television, imaging, games, business mobility and more. Devel-
oping and growing our offering of consumer Internet services, as well as our enterprise solutions and soft-
ware, is a key area of focus. We also provide equipment, solutions and services for communications networks
through Nokia Siemens Networks.

	QtHybridWebNativeDevelopment_Whitepaper.pdf
	Qt Features for Hybrid Web/Native Application Development
	Features of the Qt WebKit Integration
	Interacting With Embedded Qt Objects
	Using the Client Side Storage to Share Data
	Transforming the Web
	Summary

