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COMPARISON OF RESERVOIR LINEAR OPERATION RULES
USING LINEAR AND DYNAMIC PROGRAMMING'

Nageshwar Rao Bhaskar and E. Earl Whitlatch2

ABSTRACT: Mathematical optimization techniques are used to study
the operation and design of a single, multi-purpose reservoir system.
Optimal monthly release policies are derived for Hoover Reservoir,
located in Central Ohio, using chance-constrained linear programming
and dynamic programming-regression methodologies. Important char-
acteristics of the former approach are derived, discussed, and graph-
ically illustrated using Hoover Reservoir as a case example. Simula-
tion procedures are used to examine and compare the overall per-
formance of the optimal monthly reservoir release policies derived
under the two approaches. Results indicate that, for the mean deten-
tion time and the corresponding safe yield target water supply release
under existing design of Hoover Reservoir, the dynamic programming
policies produce lower average annual losses (as defined by a two-sided
quadratic loss function) while achieving at least as high reliability
levels when compared to policies derived under the chance-constrained
linear programming method. In making this comparison, the reservoir
release policies, although not identical, are assumed to be linear.
This restricted form of the release policy is necessary to make the
chance-constrained programming method mathematically tractable.
(KEY TERMS: optimization; reservoir operation; multi-purpose reser-
voir; simulation; chance-constrained linear programming; dynamic
Programming.)

INTRODUCTION

Mathematical optimization algorithms such as linear and
dynamic programming have been successfully applied in the
study of single, multi-purpose reservoir systems. Young
(1966) used the latter approach to derive annual operating
policies for a single reservoir. The release policies were ob-
tained by regressing optimal releases on important variables
in the reservoir system. A similar approach was adopted by
the authors (Bhaskar and Whitlatch, 1978) to derive reservoir
release policies on a monthly time scale. ReVelle, et al.
(1969), introduced the chance-constrained linear programming
method for deriving optimal release policies for a reservoir
system operating under probabilistic constraints. This tech-
nique incorporates the degree of system failure explicitly,
but is generally mathematically tractable only when used
in conjunction with a linear decision rule release policy
(ReVelle, et a!., 1969; Loucks, 1970; Loucks and Dorfman,

1975). A comprehensive review of the state-of-the-art of
mathematical models used in studying reservoir operation, in-
cluding the above two methods, is given in Stedinger, et al.
(1984), and Yeh (1985).

Studies to examine the relative merits of optimization
techniques currently used in reservoir management and design
studies are, however, lacking. In an effort to meet this need,
this paper compares monthly release policies for a single
multi-purpose reservoir system using chance constrained linear
programming with similar but not identical policies obtained
by the dynamic programming-regression methodology. Hoover
Reservoir, located on Big Walnut Creek near Columbus, Ohio,
is selected as a case study. Based on synthetically generated
inflows, the reservoir is simulated using release policies de-
nved by the two methods to determine system performance.

CASE STUDY DESCRIPTION

Hoover Reservoir is currently used to supply a draft of
75 MGD to partially meet the water needs for the City of
Columbus, Ohio. A reservoir storage of 58,154 acre-feet is
allocated for this purpose. Dead storage is 2,188 acre-feet,
and a storage equal to 25,780 acre-feet is reserved for flood
control. The top of water supply pooi represents a mean
detention time (defined as the ratio of active reservoir capa-
city to mean annual inflow) of 0.44 years indicating a
strictly within-year storage. The reservoir has been in opera-
tion since September 1954.

Statistical analysis of monthly historical flows, prior to
and after the construction of the reservoir, shows that the
inflows are log-normally distributed (Bhaskar, 1978). Im-
portant statistics based on natural inflow data from 1939-
1954 are given in Table 1. An examination of the lag-one
correlation coefficient of inflows indicated that, except for
the high flow months of February and March and low-flow
months of September and October, these coefficients were
significant at the 5 percent level of significance. Furthermore,
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a detailed analysis of higher lagged correlation coefficients
showed that for most months current inflow was not sig-
nificantly correlated with higher order lags than the first
(Bhaskar, 1978). Consequently, the use of Markov first
order model to synthesize streamfiows is justified. A Markov
first order model as proposed by Fiering (1971) is used to
synthetically generate monthly inflows based on statistics in
Table 1. This model generates the current month inflow
using a deterministic component, incorporating the mean
monthly inflow of the previous month (to reflect persistence),
and a random component (to reflect noise) whose probability
distribution depends on probability distribution of monthly
inflow.

An estimate of safe-yield (once in 50-year failure) can be
obtained through use of the sequent peak algorithm or by
simulation of the standard policy at selected target levels.
Synthetically generated inflows are applied in either method.
Both approaches suggest that the gross safe-yield (including
losses) under the existing Hoover Reservoir design is close
to 75 MGD (Bhaskar, 1978). The standard policy for reser-
voir operation can be stated as follows. First if there is not
enough water to meet the target demand, release all water
from active storage. Second, if there is more than enough
water, release enough to meet the target demand, unless there
is more water than can be stored, in which case the excess is
also released.

MATHEMATICAL DEVELOPMENT

Chance-Constrained Linear Programming

As mentioned earlier, the chance-constrained linear pro-
gramming approach is mathematically convenient when used
in conjunction with a linear release policy. A general form
of such a policy for any month t may be written as:

X = S_1 + XR — b

where:

(1)

t = time period in months over the decision period N
(t = 1,2 ,N);

= month (i = 1,2 ,l2);

X = release in period t;

S_1 = storage at the end of period t—1;

Rt = inflow in period t;

b decision constant for month i;

= parameter for month i (0 1); and

N = decision period in months.

Parameters indexed by i are cyclical over a year and are asso-
ciated with a particular month, while variables indexed by t
are defined every month over the decision period, N. The
two indices are related by the expression:

= t(mod 12) (2)

ReVelle and Gundelach (1975) proposed a release rule similar
to Equation (1) but incorporating more past period inflows.

Substitution of Equation (1) in the continuity equation,
S = S_1 + Rt — X, yields useful forms for defining reser-
voir storage:

TABLE 1. Statistics of Historical Flows (sample size = 16).

Month
Mean
(cfs)

Standard
Deviation

(cfs)
Coefficient of

Variation Skewness

Lag-One
Correlation
Coefficient

January 361.426 386.729 1.070 1.053 0.498
February 378.112 210.353 0.556 —0.331 0.351
March 400.069 235.231 0.588 1.027 0.410
April 325.681 185.343 0.569 —0.022 0.380
May 160.931 136.260 0.847 1.463 0.032
June 201.823 206.680 1.024 1.278 0.717
July 94.685 97.337 1.028 1.082 0.644
August 45.921 85.178 1.855 3.660 0.479
September 21.970 39.771 1.810 3.084 0.152
October 11.119 10.301 0.927 0.753 0.166
November 71.539 68.217 0.954 0.404 0.518
December 193.459 209.353 1.082 0.932 0.815
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Combining Equations (1) and (4) gives an alternate form of = maximum release in month i; and
the release policy involving inflows only:

a, a, a3,
and a4 = probabilities of satisfying the con-

X = XRt + (1 — Xi_i)Rti + bi — b
straints.

The first two constraints provide reservoir storage for
t = 1,2, . . . , N (5) flood-control and recreational purposes with reliabilities

a1 and a2, respectively. The third constraint assures a mini-
Optimal release policies derived in this study are expressed mum release of q in month i with reliability a3, while the
in the form of Equation (5) above. For = 0, the release last constraint restricts the release from the reservoir below
policy is similar to the one proposed by ReVelle (1969): the maximum release i with reliability, a4.

If the probability distribution of inflow, Rt, in any month
X = Rt_l + bi — b t = 1,2,... N (6) is assumed to remain unchanged over each year, the number

of constraints in each set of Equation (9) will be reduced to
When X1 = 1, the release policy is similar to the one proposed 12. Furthermore, the inflow probability distribution, Rt, can
by Loucks (1970): be replaced by the corresponding distribution, R, in month i,

where indices t and i are related as stated in Equation (2).
X = Rt + bk_i — b t = 1,2, . . . , N (7) Incorporating Equations (3) through (5), the deterministic

equivalent of the chance-constrained program formulation,

For between 0 and 1, the release policy takes the general Equation (9), becomes:

form:
Minimize C (lOa)

X = BiRt + B2Rt_l + B0 t = 1,2,... , N (8)
subject to:

where the coefficients B1 and B2 depend on the value of the a
chosen and B0 is the intercept. The form of the optimal C — b (1 — Xj)r 1 + v i = 1,2,.. . , 12 (lOb)

release policies stated in Equation (8) can be derived using
dynamic programming as demonstrated in this paper.

The mathematical program for obtaining optimal release b m — (1 — r1() i = 1,2,..., 12 (lOc)
policies for a reservoir may be written as:

Minimize C (9a) b_1 —b> q — i = 2,3,.. ., 12 (lOd)

subject to: (1—a3) j=1b12—b1 q—z1
Prob (St C — vi) a1

t = 1,2,. . . , N (9b)

i2,3,...,12 (lOe)

Prob(Stmi)a2 t 1,2,.. .,N (9c) bk_i _bfi_z

a

Prob(Xq)a3 t1,2,...,N (9d) bi2—bfi_zi4 i=1

Prob (Xt f1) a4 t = 1,2,. . . , N (9e) with

with C 0; b unrestricted i = 1,2, . . . , 12 (100

X, S 0 t = 1,2,.. . , N (91) where:

where: a
r

= inflow corresponding to the cumulative probabi-
lity of not being exceeded a percent of the time

C = reservoir capacity; (obtained from the cumulative probability distribu-

v1
= flood-control storage in month i; tion of inflows, R, in month i); and

= minimum storage in month i; a
z1

= value of random variable Z (as defined in Equa-
tion 11 below), corresponding to the cumulative= minimum release in month I;
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probability of not being exceeded a percent of
the time.

The transformed random variable Z1 can be expressed as:

Z1 = XiRi+(l —X1)R1 i=2,3,. . . ,12 (ha)

Zi = XR+(1—X12)R12 i=1

Ai examination of the above equation shows that for X = 1

for all months, the cumulative probability distribution Z1 is
identical to the corresponding cumulative probability distribu-
tion of the inflows, R, in that month. Alternatively, for

= 0 for all months, the cumulative probability distribution
of Z1 corresponds to the cumulative probability distribution
of the inflows in the previous month, Ri_i.

In this study, the chance-constrained program developed
in Equation (10) is solved by setting the X (i = 1,2, . . . , 12)
to their extreme values. For A1 equal to zero the solution
corresponds to the model suggested by ReVelle, eta!. (1969),
while a value of unity yields the model proposed by Loucks
(1970). As illustrated later in this paper, a more general form
of the release policy can be derived using dynamic program-
ming for Xi values between 0 and 1. Furthermore, the reser-
voir capacity, C, is incoprorated into the objective function
in order to evaluate its relationship to the reliability levels
a1, a2, a3, and a4 of the constraints, as will be illustrated
later.

Dynamic Programming-Regression Method

Optimal releases from a single reservoir to meet a target
demand, 1, may be obtained by solving the following dy.
namic programming recursive relationship:

f(S) = min [Ln(Xn) + en—i (Sn_i)]

Xn

with

Sn+Rn_S X S +Rn_Smin (12b)max n n

S = S_1 + R — X (12c)

where:

n =
stage number and is equal to time period, t;

f(S) total optimal return or loss at stage n;

Ln(Xn) = loss associated with release Xn at stage n;

Sn
= storage in the reservoir at the beginning of

month n;

Xn
= release at stage n;

Rn
= inflow at stage n;

5min = minimum storage (or dead storage);

S = flood control storage;

Smax = maximum storage in the reservoir below the
flood pool and is equal to (C — Sf); where C
is the reservoir capacity; and

N = number of stages in the dynamic program.

In the above formulation, each stage n corresponds to each
month t over the decision period, N. Also, a two-sided
quadratic loss function, as defined below, is used for the
loss function:

Ln(Xn) = (X —
Tn)2 (n = 1,2, . . . , N) (13)

where Tn is the target release at stage n. In the present
study, this is assumed to be at a constant level in each
month.

Synthetically generated flow sequences based on the
Markov model (Fiering, 1971) are used to represent the iii.
flows, R. Optimal releases obtained by solving the recur-
sive relationship, Equation (12), are regressed on important
variables to derive release policies. A detailed analysis of
this method is given in study by the authors (1980) and
Bhaskar (1978).

Chance-Constrained Programming

The solution of Equation (10) requires assigning values
to the known quantities. The minimum storage, m, is as-
sumed to be equal to the dead storage to the reservoir capa-
city, C. Values for the minimum and maximum allowable
releases, q and fj, respectively, are restricted by the feasibi-
lity requirements of the constraints imposed on them. For

= 0 or 1, summing constraints on the minimum and maxi-
mum release, Equations (lOd) and (lOe) yield:

12 12 (1—a)• q1 (14a)i=1 i=1

12 12 af1 r (14b)i=l i=1

Table 2 lists percentile inflows, r, in every month at se-
lected probability levels, a. These values are obtained from
the fitted theoretical cumulative probability distribution of
the historical flows. Since one of the main purposes of
Hoover Reservoir is to meet the water supply requirements,
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TABLE 2. Monthly Percentile Flows, r (cfs).

Month

Nonexceedence Probability, a

0.98 0.95 0.90 0.80 0.20 0.10 0.05 0.02

January 3463.378 1808.043 1096.633 589.928 53.517 27.660 16.610 9.488
February 1669.034 1187.969 880.069 601.845 145.474 99,484 72.967 50.401
March 1274.106 972.627 772.784 589.928 200.337 148.413 119.104 90.017
April 1450.988 1032.770 749.945 518.013 125.211 85.627 63.434 44.701
May 804.322 544.572 379.935 249.635 49.402 31.817 22.198 15.029
June 1603.590 943.881 584.058 327.013 35.874 19.886 12.183 7.029
July 1118.787 601.845 336.972 168.174 12.183 6.050 3.456 1.822
August 323.759 160.774 85.627 39.646 2.117 0.980 0.538 0.267
September 101.494 53.517 29.371 14.154 0.905 0.440 0.242 0.123
October 94.632 54.598 33.116 18.541 1.916 1.067 0.657 0.387
November 1096.633 518.013 273.144 127.740 6.821 3.158 1.682 0.819
December 2697.281 1408.105 699.244 330.300 17.289 8.005 4.179 2.014

it is reasonable to set the minimum guaranteed flow, q1, at
its maximum value while satisfying the feasibility require-
ment in Equation (14a). Assuming the same value of q in
all months, Equation (14a) reduces to

12 (1—a)
q= r /l2 (15)

The percentile flows in Table 2 are used to derive Figure 1,
which displays the minimum flow that can be guaranteed at
different levels of reliability, a3. It is noted that the condition

imposed on the minimum guaranteed flow by Equation (15)
above makes the constraints in Equation (lOd) binding.

The maximum allowable release from Hoover Reservoir in
any month, fj, is large enough to satisfy Equation (14b) as a
strict inequality. This implies that the constraints on the
maximum release, Equation (lOe), are not critical in the
solution of the present chance-constrained programming prob-
blem and could therefore be eliminated. The following
chance-constrained programming models are examined in this

paper.

RELIABILITY1 a3-' (PERCENT)
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1031 WATER RESOURCES BULLETIN

00
80

60-

Xl-

40-

30-

20 -

IC —

50
I I I

60 70 80 90 tOO

Figure 1. Minimum Guaranteed Flow, q, at Various Levels of Reliability, a3.



Bhaskar and Whitlatch

Model LDR1. The chance-constrained linear program
termed LDR1 in this study, is obtained by setting all X1 equal
to zero in Equations (10) and (11). It is solved by maintain-
ing reliabilities and a4 at a level of a* while ranging
a3, the reliability on the minimum release constraint. These
reliability levels are assumed to be equal in all months.
Figure 2 illustrates the relationship between optimal reservoir
capacity, reliability on the minimum guaranteed flow, and
levels of reliability a*. From Figures 1 and 2 it is observed
that at the existing capacity of Hoover Reservoir (86,122
acre-feet), the reliability levels a" and a3 corresponding to a
minimum guaranteed flow of 75 MGD are 0.83 and 0.50,
respectively. The optimal monthly release policies derived
under these conditions are presented in Table 3.

Model LDR2. Specifying a unit value for Xi in Equations
(10) and (11) yields the chance-constrained programming
problem LDR2. This model differs from model LDR1 by
including the current inflow, Rt, as an additional term in
the linear decision rule (Equation 1). The relationship be-
tween the optimal reservoir capacity and the minimum guar-
anteed flow reliability, a3, is shown in Figure 3. Unlike the
model LDR1, this relationship is not a function of the re-
liability a*. Also, the optimal reservoir capacity of 62,000
acre-feet required to meet a minimum guaranteed flow of 75

1-

Iii

0
xI-
C)

MGD at a reliability of 0.50 is less than the existing Hoover
Reservoir capacity. Results indicate that the optimal re-
lease policies shown in Table 3 remain unchanged even if the
existing Hoover Reservoir capacity is used in lieu of the opti-
mal capacity.

Under similar parameter conditions, policies identical to
those in Table 3 are obtained for both models, LDRI and
LDR2, when the expected value of the quadratic loss func-
tion, Equation (13), is substituted as the objective function
in place of Equation (lOa). This is shown in a previous study
by Bhaskar (1978).

Dynamic Programming

Tables 3 and 4 present optimal monthly release policies
derived by the dynamic programming.regression procedure.
A synthetically generated inflow sequence of 50-year dura-
tion constitutes inflows into the reservoir for deriving the
optimal releases using the Dynamic Programming algorithm.
The reservoir is assumed to be full at the beginning and
empty at the end operation. Observations from the initial
and final period of operation are omitted, since for Hoover
Reservoir the initial and terminal storage conditions only
affect the optimal releases in the first and last year of opera-
tion, respectively. The forms of these policies are restricted
to resemble the general form of the linear decision rule

* O.90

a*

* o.e3

a*

Figure 2. Required Reservoir Capacity, C, at Various Levels of Reliability
on the Minimum Guaranteed Flow, q, for Model LDR1.
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TABLE 3. Special Forms of Optimal Release Policies.*

Month

Model LDR1

x1=Rj_1+b1_1—b

Model LDR2

Xj'R1+b_1—b1

Model DPi

Xj=B0+B1 (R11)

Model DP2

XB0+B1 (Rj)
b. b11b1 b. b1-_b1 B0 B1 p1** B0 B1 p2***

January —0.5786 2.5772 5.7351 —3.4980 5.1512 0.8395 0.715 2.3633 0.5178 0.880
February 2.9179 —3.4965 14.7825 —9.0474 7.5136 0.2479 0.752 2.7241 0.4924 0.643
March 11.9668 —9.0489 28.2736 —13.4911 5.3884 0.3811 0.573 4.8304 0.3628 0.693
April 25.4579 —13.4911 36.3613 —8.0877 5.3641 0.3076 0.722 6.3952 0.3139 0.584
May 33.5456 —8.0877 35.9176 0.4437 10.3197 0.0634 0.188 6.3433 0.4634 0.836
June 33.1019 0.4437 35.1269 0.7907 6.1919 0.4431 0.830 5.9305 0.4402 0.876
July 32.3112 0.7907 30.7060 4.4209 7.2251 0.2706 0.753 7.4973 0.5048 0.787
August 27.8903 4.4209 24.0677 6.6383 8.5083 0.2830 0.640 9.3153 0.2885 0.568
September 21.2520 6.6383 17.0828 6.9849 9.3160 0.1745 0.421 9.6282 0.1460 0.158
October 14.2671 6.9849 10.2619 6.8209 9.8698 0.1340 0.145 9.7537 0.4259 0.148
November 7.4462 6.8209 4.8143 5.4476 9.4184 0.9547 0.278 8.0988 0.4819 0.704
December 1.9986 5.4476 2.2371 2.5772 4.6488 1.8615 0.741 5.4972 0.5951 0.890

*Existing Hoover Reservoir design is assumed, all units in thousand acre-feet, target75 MGD.
**Correlation of release with the previous month's inflow.

***Correlation of release with the current month's inflow.

I
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Figure 3. Required Reservoir Capacity, C, at Various Levels of Reliability
on the Minimum Guaranteed Flow, q1, for Model LDR2.
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TABLE 4. General Linear Release Policy.*

Month

Model DP3: X = B +
B1(R + B2 (Rt_i)

B0 B1 p1*4 B2 p2* R p3**

January 1.3422 0.4224 0.880 0.2945 0.715 0.900 0.647
February 1.8665 0.3204 0.643 0.1958 0.752 0.846 0.378
March 2.0844 0.2850 0.693 0.2171 0.573 0.749 0.464
April 3.5834 0.1611 0.584 0.2443 0.722 0.768 0.496
May 5.0339 0.4634 0.835 0.0634 0.136 0.846 0.000
June 5.6228 0.3057 0.876 0.1694 0.830 0.892 0.843
July 6.9323 0.3271 0.788 0.1341 0.753 0.826 0.744
August 8.5642 0.1270 0.567 0.2089 0.640 0.666 0.672
September 9.1489 0.1207 0.157 0.1709 0.420 0.439 0.066
October 9.6516 0.3495 0.149 0.1076 0.144 0.189 0.232
November 8.1385 0.4909 0.704 --0.1050 0.277 0.704 0.429
December 6.0583 0.6832 0.890 —0.3793 0.741 0.893 0.873

*Existing Hoover Reservoir design is assumed, all units in thousand acre-feet, target=75 MGD.
and p2 are correlation coefficients of monthly release, X with the current and previous month's inflows, Rt and Rt_i, respectively. p3 is

the correlation between the inflows Rt and Rt_l. These estimates are based on a sample size of 148.

(Equation 5) and are discussed in the following section. This
is done to examine the performance of the linear decision
rule under a wider range of possible values for the parameter
X1 (refer to Equations 6 through 8). An even greater variety
of policies possible under the dynamic programming-regression
approach are presented in Bhaskar and Whitlatch (1980).

COMPARISON OF OPTIMAL RELEASE POLICIES

Tables 3 and 4 summarize, for the purpose of compari-
son, special forms of optimal monthly release policies derived
under the chance-constrained linear programming and dynamic
programming-regression methodologies. These policies are
derived for Hoover Reservoir having a mean detention time
of 0.44 years and a target water supply release of 75 MGD.
Similar policies, not presented here, are derived at other
capacity-target levels. These policies can be mathematically
defined as follows:

Model LDR1 (refer to Equation 5 with X = 0)

X = (b_1 — b) + Rt__i

Model LDR2 (refer to Equation 5 with X =

X = (b — b) + Rt

Model DPI X = B + BlRt_I

Model DP2 X = B + BIRt

ModelDP3 X = BO+BlRt+B2Rt_l

(16a)

(16b)

(16c)

(16d)

(I6e)

where B0, B1, and B2 are regression coefficients. Models
LDR1 and LDR2 release policies would be similar in form to
Models DPI and DP2, respectively, if the regression coeffi-
cients B0 and B1 are set equal to (bk_i — b) and unity,
respectively. Thus, the chance-constrained policies are more
restrictive than the dynamic programming policies since they
assign a value of unity to the coefficient of the inflow terms
in the above release policies.

Since the chance-constrained policies implicitly assume
a two-sided quadratic loss function for a given reservoir capa-
city, C (i.e., optimal policies do not change by using this as
the objective function in lieu of reservoir capacity, C, in
Equation 10), the dynamic programming policies are derived
using a similar loss function. Results show that:

a) unlike the chance-constrained linear release policies
in models LRD1 and LRD2, the coefficients associated with
the current or previous periods inflow in the policies DP1
and DP2, are not equal to unity, and in general are widely
different from unity; and

b) the intercept terms, B0, in policies DP1 and DP2 do
not correspond to the related terms (bk_i — bk), in policies
derived under models LDR1 and LDR2.

The above conclusions hold at all target levels, since both
the chance-constrained and dynamic programming results are
target independent under a two-sided quadratic loss function
(Bhaskar, 1978). The same conclusions have been verified
at other reservoir capacities as well.

Simulation of Release Policies Under Existing Design. The
operation of Hoover Reservoir is simulated using the linear
release policies shown in Tables 3 and 4. A synthetically
generated inflow sequence of 148 year duration constitutes
inflows into the reservoir. Overall performance measures,
based on 20 such simulations, are evaluated to compare
operational differences inherent in the release policies.
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Statistics on the average percentage of shortages, presented
in Table 5, reflect the reliability with which the target re-
lease can be met in each month. It may be recalled from
the previous section that the chance-constrained linear pro-
gramming models LDR1 and LDR2 were solved assuming a
50 percent reliability of satisfying the target release (75
MGD). Results in Table 5 indicate that, at a similar target-
level of 75 MGD, the dynamic programming policies also
exhibit percentage monthly shortages which are within the
50 percent reliability level.

TABLE 5. Average Monthly Shortages* (percent).

Month LDR1 DPi LDR2 DP2 DP3

January 30.78 17.43 35.27 29.87 28.99
February 33.14 1.05 38.58 4.53 10.54
March 41.12 0.78 48.78 1.59 6.45
April 47.50 1.00 41.96 0.17 2.33
May 42.37 0.78 35.88 1.79 4.29
June 34.60 4.05 34.87 6.72 6.32
July 37.13 7.70 30.91 3.85 1.69
August 32.80 15.54 21.01 10.37 6.12
September 15.51 25.68 0.10 20.44 15.71
October 23.55 39.66 29.53 35.10 31.11
November 25.75 43.01 24.70 39.39 37.94
December 34.73 38.89 31.35 29.93 28.85

*Based on actual releases short of the target (75 MGD) with exist-
ing Hoover Reservoir design assumed.

Results for the average monthly releases, storages, and
losses (measured using a two-sided quadratic loss function)
suggest that the chance-constrained programming policies of
models LDRI and LDR2 give values and trends which are
quite different from those under the dynamic programming
policies, DPi and DP2. Table 6 indicates that the average
annual loss obtained using the chance-constrained program-
ming policies yield losses which are almost 60 percent higher
than the corresponding dynamic programming policies. On
the other hand, a comparison between the policies DP1, DP2,
and DP3 show average losses that are in close agreement.
The loss under the standard operating policy is also included
for illustrative purposes, although the nature of this policy
would be similar to the operation of a reservoir under a one-
side quadratic loss function that penalizes releases falling
short of the target only. Releases in excess of the target are
assigned no loss. A more detailed comparison of the standard
policy with release policies derived using dynamic pro-
gramming under a one-sided quadratic loss function is given
in Bhaskar (1978). Results show that release policies derived
using dynamic programming yield lower losses.

TABLE 6. Average Annual Loss Per Year.*

Model

Standard
LDR1 DPi LDR2 DP2 DP3 Policy

1987.16 1246.45 1835.41 1155.61 1138.67 1786.79

*Under a two-sided quadratic loss function; existing Hoover Reser-
voir capacity of 86,123 acre-feet; target release of 75 MGD.

SUMMARY CONCLUSIONS AND
RECOMMENDATIONS

Monthly release policies are derived for a single, multi-
purpose reservoir using chance-constrained linear program-
ming and dynamic programming-regression methodologies. A
comparison of monthly release policies using these two
mathematical optimization techniques, and the search for an
appropriate form of a monthly release policy is the major
emphasis of this study. Simulation procedures, in conjunction
with operational hydrology, are used to measure and verify
the performance of the release policies. Three conclusions
are made as a result of this study.

First, unlike the chance-constrained linear programming
policies, LDR1 and LDR2 (Equations 16a and 16b), the co-
efficient associated with the current or previous period's in-
flow in the dynamic programming policies, DPi and DP2
(Equations 16c and 16d) is not equal to unity. This is true
at all target levels and mean detention times.

Second, at a mean detention time of 0.44 years (existing
Hoover Reservoir design) both the derived chance-constrained
programming and dynamic programming policies satisfy the
reliability, a3, of meeting the minimum guaranteed flow, qi.
In addition, the derived dynamic programming policies pro-
duce a lower average annual loss while achieving at least as
high reliability levels. This observation would argue for more
research on deriving generalized linear (or nonlinear) decision
rules where in the present and past period's inflows are
weighted in an optimal manner.

Third, the use of the general form of the linear decision
rule, X = b + A1Rt + X2Rt_i +. . . + XnRt_n_i, requires
evaluation of the optimal values of the coefficients, b, A1,
A2 . . . X. Consequently, there is a need to develop methods
to determine these coefficients explicitly. The dynamic
programming-regression approach discussed here may provide
valuable information to assist in the search for these optimal
coefficients.
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