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Abstract: The problem of selecting the appropriate design flood is a constant concern to dam engineering and, in general, in the
hydrological practice. Overtopping represents more than 40% of dam failures in the world. The determination of the design flood is basec
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flood peak and flood volume have a positit@rong or weak dependence. To model properly this aspect a bivariate probability
distribution is considered using the concept of 2-Copulas, and a bivariate extreme value distribution with generalized extreme value
marginals is proposed. The peak—volume pair can then be transformed into the correspondent flood hydrograph, representing the riv
basin response, through a simple linear model. The hydrological safety of dams is considered checking adequacy of dam spillway. Th
reservoir behavior is tested using a long synthetic series of flood hydrographs. An application to an existing dam is given.
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Introduction 1997. It is interesting to note that overtopping represents more
than 40% of dam failures in the world and has been the cause of

A large number of existing dams in the world were built during Many other accident€Committee on Failures and Accidents to
the 20th century under engineering, social, economic, and climate-@rgé Dams of the United States Committee on Large Dams
conditions different from those to be faced in this century. Data 1979. In the United States, over 2,000 da3%6 of the 75,000
availability, process knowledge, and modeling techniques were atUnited States damshave been identified as potential hazards to
that time less sophisticated than today. During the last century, allVeS in upstream or downstream areas, due to problems of inad-
large amount of historical and proxy information, i.e., hourly res- €duate spillway capaciASCE 2000. _

ervoir levels and the rules to the operating outflows, were col- 1€ main purpose of the paper is to outline a very general
lected by the dam regulators. This information can improve the model describing the possible bivariate behavior of the random

knowledge of the dam inflows and consequently the dam Safetyvariables flood peak and flood volume, which are of primary in-
issues terest in hydrological practice. In particular, here the attention is

Dam failures have been significantly reduced in the last few focused on testing the adequacy of dam spillway. A methodology

decadegBerga 1998 the percentage of failures before 1950 was Lqr eya;luatlngl; ﬂ.OOdf rtlr):drogrqphs IS provuljed:l Itis ?%Se?j on i
2.3%, while for dams constructed from 1951 to 1982 it reduced to varate analysis of e maximum annual vaues ol lood pea

0.2%, and since 1982 is only 0.09%. This reduction indicates that apd flood yolume. A bivariatg extreme value distribution is.con-
progress has been achieved in dam safety. Recent regulation sidered using the mathematical concept of 2-Cop(das details

codes, and guidelines emphasize the importance of the spillwa;belom' Ahydrograph is obtained using the flood-peak and flood-

) ) i volume pair with the river basin response represented through a
design flood as a key factor to dam safee Almeida and Viseu lumped model. Successively, a synthetic series of flood-peak and

T — — _ flood-volume pairs is generated using Monte Carlo simulation.
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“Director of Hydraulic Section-RID, Via Curtatone 3, 1-00185 Roma,
Italy. E-mail: alberto.petaccia@registroitalianodighe.it The flood peak has a fundamental role in both assessing the hy-
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posed based orgl) a bivariate analysis of the maximum annual ginal laws of the variables involved. Clearly, this provides a large
values of flood peak and flood volume af&) a lumped model to freedom in choosing the univariate marginal distributions once
calculate the flood hydrograph from the values of peak and vol- the desired dependence framework has been selected, and it usu-
ume. ally makes it easier to formulate bivariatand/or multivariatg
models. Incidentally, we observe that all the bivariate models
present in the literature can easily be described in terms of proper
2-Copulas.

In general, the bivariate analysis of two random variables can be In the sequel we shall refer to a particular class of 2-Copulas,
carried out exploiting the mathematical tool of “2-Copulas,” i.e., the Gumbel's familyGumbel 196p—see also Jog1997)

which is outlined below. Then, an application to the analysis of and Nelsen(1999. The analytical expression is

the statistical dependence between flood peak and flood volume is

Peak—Volume Analysis

illustrated. Cs(u,2) = exp{~ [(= Inu)® + (- In 2°]"°} ()
_ whereu, zel andd e[1,0[. Hered represents the dependence
Overview of 2—Copulas parameter. Théimit) cased=1 corresponds to independent vari-

The problem of specifying a probability model for dependent bi- aples, withC4(u,2)=uz the (limit) cased—« corresponds to
variate observationX;,Yy), ...,(X,,Yy,) from a population with  complete dependence between the variables. Note that this family
a non-normal distribution functioftyy can be simplified by ex-  of 2-Copulas models positively dependent variables, as is of in-
pressingFyy in terms of its marginal&y andFy and an associ-  terest for the random variables considered here.

ated dependence functi@ implicitly defined through the func- An interesting property of Gumbel's 2-Copulas is that these
tional identity Fxy=C(Fx,Fy). A natural way of studying  are ArchimedeaxiNelsen 1999 this means that a 2-Copul@; is
bivariate data thus consists of separately estimating the depenthe solution of the functional equatiop(Cs(u,2))=vy(u)+v(2),
dence function and the marginals. This two-step approach to sto-where the generatoy: | —[0,%[ is a continuous, convex, strictly
chastic modeling is often convenient, since many tractable modelsdecreasing function such thatl)=0. In the present case we have
are readily available for the marginal distributions. It is clearly (Nelsen 1999 v(t)=(-Int)?, wheret  |. Kendall'st rank corre-

appropriate when the marginals are known, and it is invaluable as|ation coefficient can be expressed as a one-to-one functién of
a general strategy for data analysis in that it enables the depengg

dence structure to be investigated independently of marginal ef- 0
fects. _ Y
Let I=[0,1]. A two-dimensional Copulgor 2-Copula is a "®)=1 +4f ’(I)dl @

bivariate functionC:1 X1 —1 such that
(1) forallu, zel it holds which yields, after some algebra

- 3-1
C(u,0=0 T(3) = S 4
Cul=u Clearly the above relation betwe@nandt confers a natural in-

terpretation td®d as an association parameter. Indeed, sintea

C2=0 measure of association based on the ranks, this suggests how
and might be estimated in situations where the marginals are unknown
(see, e.g., Genest and Rivest 1993; Carriere 1994; and Nelsen
Cl,29=z 1999
(2) for all uy, uy 2, Z, el such thatu, <u, andz; <z, it holds Let (u,z),1=1,... m, denote a sample of siza from a con-

tinuous bivariate distribution. The empirical 2-Copula is the
C(UZyZZ) - C(UZyZ:L) - C(lezz) + C(Ul,Zl) =0 function given by, fon lj =1,...m

For all the mathematical details omitted see 3897 and i m;

Nelsen(1999; for an application to rainfall, see De Michele and cm(—,—> = (5)

Salvadori(2003 and Salvadori and De Michel@004). The link mm/m

between 2-Copulas and bivariate distributions is provided by wherem;=number of sample pair@i,z) such thatu<ug, andz

Sklar's theorem: <z, with theu,s and thez;s denoting the order statistics from
Let X, Y be continuous random variables andfgt, be their the sample.
joint distribution function with marginal&y andFy. Then there Using the empirical 2-Copula frequency, an estimatof of
exists a unique 2-Copul@ such that T is given by
Fxv(%,y) = C(Fx(x),Fy(y)) 1) m om i-1j-1 - b g
for all x, y. Conversely, ifC is a 2-Copula and~x and Fy are T= m— 1% JEszmEl [%(E a) m(aa>

distribution functions, therfyy is a joint distribution function

with marginalsFy and-. i q p ]
The interesting point is that the propertiesFof, can be dis- —Cm<a-a)cm(a,a>] 6)

cussed in terms of the structure Gf in fact, it is precisely the

2-Copula that captures many of the features of a joint distribution, Once an estimate of 7 is obtained, it is then possible to calculate

and measures of association and dependence properties betweemn estimated of & using Eq.(4), and thus select a well-defined

random variables can be investigated in terms of 2-Copulas. Ac-2-Copula from Gumbel’s family. Most importantly, we observe

tually, a 2-Copula exactly describes and models the dependencehat such a procedure does not depend upon the marginal laws

structure between random variables, independently of the mar-involved, which then need not be known or estimated in advance;
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indeed, in practical applications, empirical 2-Copulas may repre- determined considering the return period of the p&i,.,,V); in

sent a fundamental tool for fitting a given dependence structure toother words, the flood event would be correctly identified only by

the available datgsee, e.g., Deheuvels 1979; Genest and Rivest considering the joint variability of the relevant pair of random

1993; Nelsen 1999; De Michele and Salvadori 2003; Salvadori variables.

and De Michele 200¢ Now, at least two different “design events” can be defined in
Below we show how Gumbel's 2-Copulas are suitable candi- the bivariate case. In fact, having fixed a return pefipéve may

dates to model the dependence between flood peak and floodtonsider as critical events the following ones:

volume. 1. (OR casg either Q> 0y, or V>uq, or both, i.e.

Peak—\Volume Model Eor ={Qmax> 0y or V> uv+} (11)
The random variables of interest here are the maximum annual .
2. (AND casg both >0r andV>vr, i.e.
values of flood peakQ ., and flood volumey; as a marginal ( 9 Qmax= Ar o
distribution function for bothQ,,,,, andV we use the generalized Eanag={Qmax> 07 andV > v} (12

extreme valugGEV) distribution ) o o ]
In simple words: forE,, to happen it is sufficient that either

_ 1/k H A
. exp[— (1 _ KQq sQ) Q] q4>eo+ ag Qmax Or V (or both exceed given thresholds; instead, fy,qto
Qmax -

happen it is necessary that bafh,., andV are larger than pre-

(03 K
0 © otherwiseo scribed values. Thus, two different joint return periods can be
defined accordingly
()
Tor = = = (13
I . Hhy Qy " P[Qmax>drorV>uvr]  1-Cy(urz)

ex 1 Ky v > 8\/+
Fu(v) = Qy ky (8

0 otherwise 1 1

Tand: =
whereeq, ey are location parameterag, o, >0 are scale param- P[Qmax> dr andV>us] 1 -ur =25+ Cy(Ur,zy)
eters, andkqg,ky<0 are shape parameters. We only consider (14
negative shape parameters in order to deal with upper-unbounded _ _ . .
random variables. In addition we hawg=-ag/kq and sy= where Ur=Foma(dr) and zr=F(vp). Since for Archimedean

-/ ky because),,., andV are positive defined. The constraint copuﬁs(;]a(x,_x)<x,t thfn necessar||§ror<le< -I;a”.f]ﬁ Th's,; last |én_-_ d
Kq,ky<0 yields (asymptoti¢ excess probability functions with equality has important consequences. n fact, 1ta return perio
an algebraic falloff, i.e., fox> 1 is fixed, thenE,, appears more frequently than expectethce

T, <T); thus,E,, is not aT-years bivariate event, andH,, were

1 -Fgey(X) ~ xLk (9 used as a “critical” design event, in order to halg=T the
marginal quantilegir,vt should be increased; in other words, if
gr,vt Were used as “critical” design quantiles, then the resulting
work would be underdimensioned, and would be at risk! On the
contrary, E,,q appears less frequently than expect&ince
T T); again,E,qis not aT-years bivariate event, and 4
were used as a “critical” design event, in order to h@yg=T the
marginal quantiles|;,v+ should be decreased; thusgif,vr were

and hence only the moments of order less thank—éXist. It is
just the presence of such heavy tails that makes GEV laws useful
for describing extreme phenomena.

In order to model the dependence betw€gn, andV we use
a 2-Copula from Gumbel's family and Sklar’s theorem. Thus the
joint distribution Fgmag 0f Qmax andV is given by

Fo v(Q,0) =Cy(Fg_ (0),Fy(v)) used as “critical” design quantiles, then the resulting work would
mex mex be overdimensioned, yielding a waste of money!
=exg-[(-InFq__(9)°+ (- InFy(v))°]**} Note that the above bivariate analysis also includes, as a very

(10) particular case, the univariate one: in fact, considering the copula
used in this paper, as the dependence pararieter (i.e., asV

It is then easy to obtain the joint density functioiymaxy by becomes almost surely a function @f,,,, and vice versg both

differentiatingF gmaxy With respect tdQy,,andV. Then, inverting To—T and T,,— T. As an example, in the present ca8e

Eq. (10), it is possible to determine the flood peak and volume =3.055; then, fixingT=1,000 years, we obtaiii,,~ 798 years

with a given frequency of occurrence or return period. and T,,4~ 1,341 years, i.e.T,,=79% T and T,,q=134%T, in
agreement with the previous explanation. In general, the same
Return Period of Pair (Qnax, V) and Comparison between conclusions remain valid for other families of Archimedean copu-
Univariate and Bivariate Analysis las.
The determination of the design flood is commonly based on the  Evidently, the analysis of bivariate return periods is greatly
quantilegr of the maximum annual flood pedR,,, with return facilitated by using copulas; furthermore, many other kinds of
period Tomae alternatively, the quantile+ of the maximum an- joint events can be considered, and all the corresponding pairs
nual flood volumeV with the same return period,=Tgonayx IS (Qmax V) having a prescribed return period can easily be calcu-

considered. Thus, essentially, an univariate approach is adopted ifated: this gives the hydrologists a precise understanding of the
practice. In particular, the spillway design flood is usually calcu- stochastic joint dynamics of the variables of interest, as well as

lated choosing a return perio@l=Tgma=Ty=1,000 years(or, the possibility of correctly sizing the works.
sometimes;T=5,000 or 10,000 years, depending upon the coun-
try consideregl Monte Carlo Generation of Flood Peak and Flood Volume

However, since in general flood peak and flood volume have a An algorithm to generate random variablé®.,, V) with
positive (strong or weakdependence, the design flood should be 2-CopulaC; is as follows(Nelsen 1999 Let
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82 = %Ca(u,z) =Pz<ZU=u) (15

which exists and is nondecreasing almost everywhete ihen:

1. Generate two independent random variablggndr,, both
uniform onl;

2. Setu=r; andz=s,(r,); and

3. From the pailu,2) it is possible to generate a pdi,ay,v)
extracted from the joint
=C(Fomad@),Fy(v)) settingg=F (‘;nax(u) andv=F (2).

2.

Shape of Flood Hydrograph

Here we consider the hypothesis that the maximum annual flood
peak and the maximum annual flood volume are generated by the

same flood event. This hypothesis will be tested against observed.

3.

Simulation of Reservoir Behavior and Adequacy of
Dam Spillway

A simulation of reservoir behavior can be carried out considering
a long synthetic series of maximum annual flood evergpre-
senting the expected design life of the resernvand thus it is
possible to check adequacy of the dam spillway. The framework
of simulation can be outlined as follow:

law FQmaX\/(an) 1.

Generate a synthetic couple of maximum annual values of
flood peak and flood voluméQ, .., V);

Transform the coupléQ... V) into the flood hydrograph
q(t);

Associate an initial reservoir levés.g., taken as outcome of
the empirical distribution of initial levels recorded in several
yeary; and

data for the case study considered in the following section.

The determination of flood hydrograph given pe@k., and
volumeV requires the knowledge of the shape of the hydrograph.
A first-order approximation is to consider a triangular flood hy-
drograph, where the base tinmig is equal toT,=2V/Q . the
time of rise equald,=T,/2.67, and the time of recession is equal
to 1.67T,, (Soil Conservation Service 1972; Chow et al. 1988, p.
229). Then the flood hydrograpg(t) is

2
1.335Qvﬂxt 0<t=<T,
qt) = ) (16)
1.6Qmax— 0.8 \”/‘axt T,<t<T,

Another possibility is to build the flood hydrograph with fixed
flood peakQ,,.x and flood volumeV through the convolution of

an instantaneous unit hydrograph of a linear reservoir. In this case

the flood hydrograply(t) is

V
_(1 _ e—t/k)
ty

q(t) = 1

t_[e—(t—to)/k e o<t
0

wherety=function of Q. andV via the transcendenequation
toQmax V=1-€"10% andk=time constant of the linear reservoir
model, easy to estimate using the method of momeses Bras
1990, p. 445

Alternatively, a flood hydrograph with fixed flood pe&k,.x
and flood volumeV can be obtained through the convolution of
an instantaneous unit hydrograph of a cascade efjual linear
reservoirgNash 1957, see also Bragl990, pp. 446—447 In this
caseq(t) is

vt 1 (t—g)*l
s ) ~(t-0/ky t<
%Lknm k) € 4 0stst

to _ n-1
Yf L(u) e‘(t_l)/kdg tO <t
toJo KL(M\ K

qn = (18

wherety=again a function ofQ,,,, andV; andt, can be deter-
mined numerically assuming that the maximung is equal to
Qmax Heren andk are the model parameters: the first one repre-

Operate the reservoir routing of flood hydrogrdfidr more
details see Bragl1990, pp. 475-478and Zoppou(1999]
considering as an outlet only the uncontrolled spillway, and
check that the reservoir level does not pass the crest level of
the dam. The procedure is iterated to consider a long series
of maximum annual flood eventd,000 yearks representing the
expected design life of the dam. Thus it is possible to check
adequacy of dam spillway during the life of the reservoir.

Case Study

The procedure given in the previous sections is illustrated here for
the Ceppo Morelli dam. The dam with a hydroelectric power
plant was built in 1929 on the Anza catchment, a subbasin of the
Toce river basin, located in Northern Italy. The catchment area is
125 knf. The maximum water storage is small, about 0.47
X 10° m3. The maximum water level is at 782.5 m.a.s.l., and the
dam crest level is 784 m.a.s.l. The dam has 84 m of uncontrolled
spillway at 780.75 m.a.s.l. The dam has also intermediate outlets
and bottom outlets. The last ones are obstructed by river sedi-
ments. Hourly observations of reservoir level and operations to
the controlled outlets are available from 1937. This information
yields the flood hydrograph downstream from the reservoir. Op-
erating an inverse reservoir routing it is possible to reconstitute
the historical flood hydrograph for the inflow to reservgéee
Zoppou 1999, and from this obtain the series of maximum an-
nual flood peak and maximum annual flood volu(@ years. In
addition, checking the dates of occurrence of maximum annual
values of flood peaks with those of maximum annual flood vol-
umes, it turns out that in almost all of the cases these occurred
during the same flood event, for this reason, in this paper we
consider these variables generated by the same storm. The 49
pairs of maximum annual flood peak and volume are given in Fig.
1. A strong positive dependence between the two variables is
present.

We estimate the statistical dependence between the maximum
annual flood pealQ,,., and maximum annual flood volumé,
considering as measures of association the canofffearson’s
coefficient of linear correlatiopp, and the Kendall's. The esti-
mated values are given in Table 1. The dependence bet@ggn
andV is positive. For the latter measure, shown is the correspond-
ing estimate of the dependence paramatef the 2-Copula, cal-
culated using Eq(4). For the sake of comparison, also shown is
the estimate 08 calculated via the maximum likelihood method.

sents the number of linear reservoirs and the second one a timd-inally, we compute the average estimate @gual to 3.055; this

constant;n andk are easy to estimate using the method of mo-
ments(Bras 1990, pp. 446—447

indicates a strong association between the variables considered.
The estimates reported are consistent with one another, and pre-
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Table 2. Estimated Values of Generalized Extreme Value Parameters for
Both Flood Peak and Volume UsiigMoments Technique and Also Joint
Estimates Using Maximum LikelihoogML ) Method

30 Parameter L moments ML
. gq (M¥/s) 57.972 59.221
< ag (m¥/s) 33.689 35.676
B 27 Ko () -0.420 -0.338
> ¢ °
o sy (10° md) 1.744 1.774
0 ° ay (108 m3) 1.620 1.544
o, Ky (—) -0.564 -0.570
0o &0
A
0 0“ e 200 w0 e 50 e00 for poth \{ariables, which then exhibit asymptotic heavy tail be-
havior. It is important to note that, as a consequence of(&x.
Qrnax [M 5] the skewness d,,.x does not exist at all, as well as the variance

Fig. 1. Maximum annual flood peak versus maximum annual flood
volume

cisely fix the degree of dependence betw€gp, andV indepen-
dently of the marginal laws of such variables. As a further analy-
sis, in Fig. 2 we plot the Gumbel's 2-Copula, and compare it with
the corresponding empirical 2-Copula functigp calculated via
Eq.(5). The agreement between the data and the model is visually
good, and is objectively checked via a standgtdest: as a result,
the hypothesis that the theoretical model is consistent with the
data can be accepted at all the standard significance I€lels
and 10%.

In Table 2 we show the estimates of the parameters of the
GEV marginal laws of),.x andV; here theL moments technique
is used(Hosking 1990. The shape parameteris always negative

Table 1. Estimated Values of Two Measures of Association: Pearggn’s
and Kendall’st; for Last Measure, Shown is Corresponding Estimate of
Dependence Paramet@mof Gumbel's Copula

Dependence

parameter d

Pp 0.964 —

T 0.651 2.868
ML — 3.241

Note: For sake of comparison, also shown is estimat adlculated via
maximum likelihood(ML ) method.

Fig. 2. Comparison between empirical and theoretical copula

of V; thus, apparently, the traditional method of moments tech-
nique could not be used to estimate the parameters of inf@est
opposed to thé& moments technique adopted her€or the sake

of comparison, the joint estimates of the parameters calculated
using the maximum likelihood method are also shown in Table 2.
From this, it is evident that the estimates of the marginal param-
eters obtained with the two methods are consistent with one an-
other. In Figs. 3 and 4 the empirical distributions@f., andV

are shown, as well as the corresponding GEV fits, using the pa-
rameter’s estimates given in Table 2. The agreement between the
empirical and theoretical distributiqiconsidering the two sets of
estimatepis good for both variables; in particular, the use of both
the Kolmogorov—Smirnov and Anderson—Darling goodness-of-fit
tests(see, e.g., Kottegoda and Rosso 1997, pp. 285-288ws

that the theoretical model is consistent with the data at all the
standard significance leve($, 5, and 10%

In passing, we observe a further important feature of the
present approach: the possibility of selecting a suitable 2-Copula
via the estimate of the Kendall’'s as explained above, may not
be affected at all by the possible nonexistence of lower-order
moments. On the contrary, the use of other measures of associa-
tion such as the canonical Pearson’s coefficient of linear correla-
tion pp (which, instead, is often used in common practiceces-
sarily requires the existence afat least the second-order

2000 " o Observeddata |
0 Synthetic data
= GEV/L-moments
1600 | —— GEV/ML
2 1200 -
E
3
o 800+
400 -
04

2
An[-In(Fq)]

Fig. 3. Comparison between empirical distributions of observed and
synthetic data(only upper part —If-In(Fg)]>4) and generalized
extreme value fits using. moments and maximum likelihood
parameters estimations fQay.
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2 OI © Observed data

T| o Syntheticdata |
¢ | ==——GEV/L-moments -

200 T GEV/ML

0

2
-In-In(Fy)]

Fig. 4. Comparison between empirical distributions of observed and
synthetic data(only upper part -Ip-In(Fy)]>4) and generalized
extreme value fits using. moments and maximum likelihood
parameters estimations fof

moment. However, it is clear that meaningless estimategpof

hydrographs. The rainfall precipitation was transformed into run-
off using the Soil Conservation ServicgBCS—CN method with

an estimated value of the CN parameter, at basin scale, equal to
55 (this was obtained by fitting over the observed hyetograph and
hydrograph data

For four flood events, Fig. 5 gives a comparison between the
observed flood hydrograph and the estimated one, considering the
sample estimate of and k obtained on the single flood event.
Fig. 5 also includes the rainfall hyetograph and the estimated
direct runoff.

The expected value and the standard deviation of estimate of
the two parameter: and k are as follows:E[n]=2.2, E[k]
=2.1 h, ¢["]=1.35, o[k]=0.63 h. Note that[n] and E[k] are
used in the long hydrologic simulation to assess the safety of the
dam in terms of adequacy of the dam spillway.

A long synthetic series of 1,000 flood-peak—flood-volume
pairs is generated using Monte Carlo simulation. The upper part
of the empirical distribution of synthetic dataln[-In(F)]> 4} is
reported, respectively, in Fig. 3 fd,. and in Fig. 4 forV.
Using the series of peak—volume pairs, the corresponding set of
1,000 synthetic hydrographs was generatedvering the ex-
pected design life of the damusing the Nash model and Eq.

may be obtained if, as in the considered case, the existence of th¢18). To each flood hydrograph is associated a reservoir level at

variance is questionable: in faat, ~-0.564<-1/2; neverthe-
less, the “suspicious” value @f; is also reported in Table 1 for
the sake of completeness.

From the couple flood peaR,,., and flood volumeV the cor-

the start of the flood event. Also available is the series of reservoir
levels antecedent to the maximum annual flood event. Fig. 6
shows the cumulative distribution of the reservoir level. Note that
several distributions were considered to fit such data, but none

responding flood hydrograph is calculated using the instantaneousrovided acceptable agreements. This is due to the fact that the

unit hydrograph of a cascade ofequal linear reservoiréNash
mode) [Eqg. (18)]. The model parameters,andk, are estimated

levels are influenced not only by the precipitation inflows but also
by the operation policy of the dam manager. Accordingly, in the

applying the method of moments to each of the observed flood present analysis we used the empirical distribution. From this we
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Fig. 5. Comparison between observed and calculated flood hydrographs
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1 Conclusions

The main purpose of the paper is to outline a very general model
that describes the possible bivariate behavior of the random vari-
ables flood peak and flood volume, which are of primary interest
in hydrological practice. The paper presents a bivariate statistical
: procedure for the evaluation of flood hydrograph and to check the
06 + adequacy of spillway, an important issue for dam engineering,
f and in general for the hydrological practice, where the variables
- of interest usually show som@veak or strongdegree of depen-
04 - dence requiring a bivariate model. Indeed, from a mathematical
- § point of view, the use of 2-Copulas represents the easiest ap-
g proach to problems involving couples of variables. Many of the
: W difficulties in the bivariate approaches present in the literature
0.2 + & : : : . .
] o ; (having a theoretical and/or a practical origican now be by-
1‘ og ‘ passed through a proper formulation of the problem in terms of
‘ g 2-Copulas, which represent the most recent and most promising
0 4o —t i mathematical tool for investigating bivariate problems: this rep-
776 777 778 779 780 781 782 resents a significant improvement in the field of statistical hydrol-
Initial reservoir level [m.a.s.L.] ogy and modeling.
The proposed procedure is based on the bivariate probabilistic
Fig. 6. Empirical distribution of initial reservoir level before flood analysis of maximum annual values of flood peak and flood vol-
event ume. A bivariate extreme value distribution is considered using
2-Copulas. In particular the Gumbel's 2-Copula is adopted to rep-
resent the positive dependence between the flood peak and flood
volume, and a GEV law is considered as a marginal distribution
) ) . for both variables. From the pair peak—volume, the flood hy-
extracted a series of 1,000 reservoir levels and associated each Qflrograph is obtained through the convolution of an instantaneous
these to a synthetic hydrograph. Operating the reservoir routing of it hydrograph of a linear model. Successively, a long series of
the synthetic series of hydrographs we assessed the safety of thgggg hydrographg1,000 yearsis generated, and operating the
dam in terms of adequacy of dam spillway. reservoir routing on this, it is possible to check the behavior of the
Fig. 7 shows the empirical distribution of the maximum reser- reservoir during the expected design life of the dam and thus
voir level reached during the simulated flood event. The analysesadequacy of dam spillway. The Ceppo Morelli dam is considered.
show that the maximum water lev€l82.5 n) is exceeded only  The results show the adequacy of spillway and consequently the

08 —

CDF

in =~2% of the cases, whereas the dam crest 1€¢v84 m) was safety of the dam. The proposed methodology does not rely upon
never exceeded. Thus, the overall result indicates the hydrologicalthe specific climate conditions, or the size of the catchment area,
safety of the Ceppo Morelli dam. or the dimension of the dam considered. The model presented is

fully general, and in principle it could be applied to scenarios
different from the one considered here.

Note how the approach proposed could be used both as an
evaluation method of an existing design and as a design mode of

L dam spillway or river polder spillway. In other words, if a dam
1 already exists, the approach can be used to check the adequacy of
gl dam spillway; at the same time, if flood hydrographs are available
08 1 (as usually provided by flood gageshe approach provides a
clear methodology for the design of dam spillways.
06 +
&
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